Converse result on Szász-type operators

Zhanjie Song

Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (2) : 135 -137.

PDF
Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (2) : 135 -137. DOI: 10.1007/s12209-010-0024-3
Article

Converse result on Szász-type operators

Author information +
History +
PDF

Abstract

Szász-type operators can be constructed by a Poisson process. The purpose of this paper is to derive the converse result in connection with Szász-type operators by Steckin-Marchaud-type inequalities and new Ditzian modulus of continuity. The degree of approximation on deterministic signals is also given.

Keywords

Szász-type operators / Poisson process / Steckin-Marchaud-type inequalities / continuity / approximation

Cite this article

Download citation ▾
Zhanjie Song. Converse result on Szász-type operators. Transactions of Tianjin University, 2010, 16(2): 135-137 DOI:10.1007/s12209-010-0024-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ross S. M. Stochastic Processes[M]. 1996 2nd Ed. New York: John Wiley & Sons.

[2]

Szász O. Generalization of Bernstein’s polynomials to the infinite interval[J]. J Research Nat Bur Standards, 1950, 45 239 245

[3]

Gröchenig K. Reconstruction algorithms in irregular sampling[J]. Math Comput, 1992, 59 181-194.

[4]

Sun W., Zhou X. Reconstruction of bandlimited function from local averages[J]. Constructive Approximation, 2002, 18 205-222.

[5]

Song Z., Yang S., Zhou X. Approximation of signals from local averages[J]. Applied Mathematics Letters, 2006, 19 1414-1420.

[6]

Butzer P. L. On the extensions of Bernstein polynomials to the infinite interval[J]. Proc Amer Math Soc, 1954, 5 547-553.

[7]

Kantorovich L. Sur certains developpements suivant les polynomes de la forme de S. Bernstein[J]. I. II, C. R. Acad Sci URSS, 1930, 1(2): 563-568.

[8]

Wickeren E. Steckin-Marchaud-type inequalities in connection with Bernstein polynomials[J]. Constructive Approximation, 1986, 2 331-337.

[9]

Ditzian Z. Direct estimate for Bernstein polynomials[J]. J Approx Theory, 1994, 79 165-166.

[10]

Ditzian Z., Totik V. Moduli of Smoothness[M]. 1987, New York: Springer Verlag.

AI Summary AI Mindmap
PDF

269

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/