Regularization semismooth Newton method for p 0-NCPs with non-monotone line search

Ping Wang , Yuwei Zang , Ying Zhang

Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (2) : 138 -141.

PDF
Transactions of Tianjin University ›› 2010, Vol. 16 ›› Issue (2) : 138 -141. DOI: 10.1007/s12209-010-0025-2
Article

Regularization semismooth Newton method for p 0-NCPs with non-monotone line search

Author information +
History +
PDF

Abstract

Based on the generalized Fischer-Burmeister function, Chen et al in 2008 put forward a regularization semismooth Newton method for solving the nonlinear complementarity problem with a P 0-function. In this paper, we investigate the above algorithm with the monotone line search replaced by a non-monotone line search. It is shown that the non-monotone algorithm is well-defined, and is globally and locally superlinearly convergent under standard assumptions.

Keywords

nonlinearity / complementarity / semismooth Newton method / Fischer-Burmeister function

Cite this article

Download citation ▾
Ping Wang, Yuwei Zang, Ying Zhang. Regularization semismooth Newton method for p 0-NCPs with non-monotone line search. Transactions of Tianjin University, 2010, 16(2): 138-141 DOI:10.1007/s12209-010-0025-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Facchinei F., Pang J. S. Finite-Dimensional Variational Inequalities and Complementarity Problems[M]. 2003, New York: Springer Verlag.

[2]

Chen J. S., Pan S. H. A family of NCP functions and a descent method for the nonlinear complementarity problem[J]. Computational Optimization and Applications, 2008, 40(3): 389-404.

[3]

Chen J. S. The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem[J]. Journal of Global Optimization, 2006, 36(4): 565-580.

[4]

Fischer A. A special Newton-type optimization method[J]. Optimization, 1992, 24(3): 269-284.

[5]

Facchinei F., Kanzow C. Beyond monotonicity in regularization methods for nonlinear complementarity problems[J]. SIAM Journal on Control and Optimization, 1999, 37(4): 1150-1161.

[6]

Sun D. A regularization Newton method for solving nonlinear complementarity problems[J]. Applied Mathematics and Optimization, 1999, 40(3): 315-339.

[7]

Chen J. S., Pan S. H. A regularization semismooth Newton method based on the generalized Fischer-Burmeister function for P 0-NCPs[J]. Journal of Computational and Applied Mathematics, 2008, 220(1/2): 464-479.

[8]

Zhang H. C., Hanger W. W. A nonmonotone line search technique and its application to unconstrained optimization[J]. SIAM Journal on Optimization, 2004, 14(4): 1043-1056.

[9]

Fischer A. Solution of monotone complementarity problems with locally Lipschitzian functions[J]. Mathematical Programming, 1997, 76(3): 513-532.

[10]

Jiang H., Qi L. A new nonsmooth equations approach to nonlinear complementarity problems[J]. SIAM Journal on Control and Optimization, 1997, 35(1): 178-193.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/