The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon nanotubes tend to inhibit the formation of large cracks by nucleating nano-scale damage zones. In addition, the contribution to energy absorption from the fracture of nanotubes bridging across nano-scale cracks and from nanotube pull-out from the matrix are mechanisms that can improve the fatigue life. An energy-based model was proposed to estimate the additional strain energy absorbed in fatigue. The distributed nanotubes in the matrix appear to both distribute damage as well as inhibit damage propagation resulting in an overall improvement in the fatigue strength of glass fiber composites.
A novel method of designing and preparing bone tissue engineering scaffolds with controllable porous structure of both macro channels and micro pores was proposed. The CAD software UG NX3.0 was used to design the macro channels’ shape, size and distribution. By integrating rapid prototyping and traditional porogen technique, the macro channels and micro pores were formed respectively. The size, shape and quantity of micro pores were controlled by porogen particulates. The sintered β-TCP porous scaffolds possessed connective macro channels of approximately 500 μm and micro pores of 200–400 μm. The porosity and connectivity of micro pores became higher with the increase of porogen ratio, while the mechanical properties weakened. The average porosity and compressive strength of β-TCP scaffolds prepared with porogen ratio of 60wt% were 78.12% and 0.2983 MPa, respectively. The cells’ adhesion ratio of scaffolds was 67.43%. The ALP activity, OCN content and cells micro morphology indicated that cells grew and proliferated well on the scaffolds.
Two novel mixed-ligand complexes, [M(phen)2(ans)2]·H2O (M = Cd(II) 1, Zn(II) 2; phen is 1, 10-phenanthroline, and ans is 4-aminonaphthalene-1-sulfonate), were obtained from the reaction of 1, 10-phenanthroline, sodium 4-aminonaphthalene-1-sulfonate tetrahydrate and acetate in mixed solvents. Interaction of the complexes with calf thymus DNA (ctDNA) were investigated using UV-vis absorption spectra, luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide (EB) and viscosity measurements. The experimental results indicate that there exist two interaction modes between the complexes and DNA, namely the electrostatic interaction and intercalation, with the binding constants of 1.82 × 105 M−1 for 1 and 4.78 × 104 M−1 for 2 in buffer of 50 mM NaCl and 5 mM Tris-HCl (pH 7.0).
The neural stem cells (NSCs) were seeded in the surface layer of hydrogels made of IKVAV-containing peptide amphiphile. Two-dimensional effects of hydrogel on growth and differentiation of NSCs were investigated. Peptide was synthesized in solid way. Cells were harvested from the cerebral cortex of neonatal mice, identified by immunohistochemical methods. Cells were incubated in the surface layer of self-assembled peptide hydrogel and coverslips for seven days respectively, detected immunocytochemically for NF and GFAP. The molecular weight (M W) of Peptide was 1438 and purity was 95.22%. Cells were identified as Nestin-positive NSCs. TEM showed that hydrogel was composed of interactive nanofibers. NSCs extended processes, and were able to be differentiated into NF-positive neurons with red fluorescence and GFAP-positive astrocytes with green one in the surface of hydrogel. However, NSCs only formed undifferentiated neurospheres in the surface layer of coverslips. Results indicate that the self-assembled hydrogel from peptide amphiphile has good cyto-compatibility to NSCs and induced their differentiation.
In order to overcome the limitation of hydro-rim deep drawing, a new process of hydrodynamic deep drawing (HDD) with independent radial hydraulic pressure was proposed. By employing the dynamic explicit analytical software ETA/Dynaform5.5 which is based on LS-DYNA3D, the effects of independent radial hydraulic pressure on the stress, strain and the sheet-thickness of aluminum-magnesium cylindrical cup with a hemispherical bottom were analyzed by numerical simulation. The feature of stress distribution is that there exists a stress-dividing circle in the flange, and the radius of dividing circle was determined by theoretical analysis and stimulation. The experimental results indicate that the reasonable match of independent radial hydraulic pressure and liquid chamber pressure can effectively reduce the thinning at the bottom of hemisphere, decrease the radial stress-strain, and improve the drawing limit of aluminum-magnesium alloy cylindrical cup.
The mechanical properties and microstructures of 6013 alloy after different thermomechanical treatments were investigated. The detailed dislocation configurations after deformation and morphologies of age hardening precipitates were examined through transmission electron microscopy (TEM). The experimental results show that the thermomechanical treatment can significantly enhance the strength of 6013 alloy, and has a similar influence trend on single and two-step aging behaviors. With the increasing deformation ratio, the peak-hardness (HVmax) increases, the time to HVmax shortens, and the density of tangled dislocation network increases. The aging precipitates become larger and inhomogeneous by applying thernomechanical treatment.
Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800 °C, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a peak stress followed by a decease with increasing strain, and finally forms a stable stage. Dislocations are generated at the interface of α/β phase, and the phase interface and dislocation loops play an important role in impeding the movement of dislocation. As strain increasing, micro-deformation bands with high-density dislocation are formed, and dynamic recrystallizaton occurs finally. XRD Fourier analysis reveals that dislocation density increases followed by a decrease during compressive deformation, and falls into the range from 1010 to 1011 cm−2.
Particle reinforced Sn-Zn based composite solders were obtained by adding Cu powders to Sn-9Zn melts. The microstructure analysis reveals that in situ Cu5Zn8 particles are formed and distributed uniformly in the composite solders. The strength and plasticity of the composite solders were improved, and creep resistance was considerably enhanced. The wettability of these composite solders is also better than that of Sn-9Zn.
To identify the re-arrangement of constituent atoms of an amorphous Mg65Cu25Gd10 alloy happened with annealing, structure relaxation of the alloy was investigated as a function of annealing time at 373 K through extended X-ray absorption fine structure (EXAFS) analysis procedures. To understand the effect of structure relaxation on strength, compression tests were conducted for both the as-cast and the annealed Mg65Cu25Gd10 samples. It is found that short range order around Cu and Gd atoms exhibits different variation trends with increasing annealing time at 373 K, though the structure of the alloy still remains to be amorphous. Based on the fact that the strength of the alloy first exhibits a reduction and then a recovery with annealing time, it is suggested that the enhancement of short range order around Cu should be responsible for the strength reduction, while the enhancement of short range order around Gd should be responsible for the strength recovery.
The properties and microstructure of microwave and conventional sintered Fe-2Cu-0.6C powder metallurgy (PM) alloys were investigated. The experimental results show that microwave sintered alloy has the better properties (sintered density 7.20 g/cm3, Rockwell hardness 75 HRB, tensile strength 413.90 MPa and elongation 6.0%), compared with the conventional sintered counterpart. Detailed analyses by using optical microscopy and scanning electron microscopy (SEM) reveal that microwave sintered sample has finer microstructure with small, rounded and uniformly distributed pores, and also demonstrate the presence of more flaky and granular pearlite in the microwave sintered body, both of which account for the property improvement. SEM images on the fracture morphology indicate that a mixed mode containing ductile and brittle fracture is presented in microwave sintered alloy, in contrast with the brittle fracture in conventional sintered counterpart.
The effect of surface structure and coating on tribological properties of 45# carbon steel disc was analyzed. A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with diameter of 150 m and depth of 50 m were distributed in an orbicular array on disc surface. Then the alloying element Mo was sputtered to 45# carbon steel disc surface by means of double glow plasma technology. Diffusion Mo alloying layer with 30 min thickness and high hardness up to 0.025 was formed on the disc surface. Tribological experiments of three types samples (smooth, texturing and texturing+alloying) were conducted with a pin-on-disc tribometer. It is found that the dimpled-samples are most effective for reducing friction in comparison with smooth steel surfaces, improving the lubricating state from boundary to hydrodynamic region.
An intercalative composite of graphite oxide (GO) as host intercalated by an object of TiO2 nanoparticles was obtained at low temperature by mixing GO with Ti(SO4)2 solution, and by another object of Ti2O3 while mixing with TiCl4 ethanol solution. Microstructures of the GO and its intercalative composites at different C/Ti ratio were studied by XRD, SEM, AFM and FT-IR, and the evolution of these lamellar structures was studied based on the temperature change. The photocatalytic activity of the intercalative composites was characterized according to the degradation of methyl orange. The intercalative composite formed by Ti(SO4)2 solution presents an excellent photocatalytic reactivity, while that formed by TiCl4 presents no observablly photocatalytic reactivity. The electric conductivity variation of different composites was checked, in order to investigate the role of the possible electron transfer between the graphite layer and TiO2 nanocrystal during TiO2 excited by UV light irradiation.
Tungsten trioxide micropheres were prepared by spray pyrolysis, and tungsten carbide microspheres were produced by spray pyrolysis-low temperature reduction and carbonization technology. Multi-walled carbon nanotube-tungsten carbide composites were prepared by the continuous reduction and carbonization process using multi-walled carbon nanotubes (MWCNTs) and WO3 precursor by molecular level mixing and calcination. The morphology and structure of the samples were characterized by scanning electron microscope and transmission electron microscope. Furthermore, the crystal phase was identified by X-ray diffraction. The electrocatalytic activity of the sample was analyzed by means of methanol oxidation. Tungsten carbide microspheres were catalytic active for methanol oxidation reaction. Nevertheless tungsten trioxide microspheres and multi-walled carbon nanotube-tungsten carbide composites were not catalytic active for methanol oxidation reaction. These results indicate that tungsten carbide micropheres are promising catalyst for methanol oxidation.
A flame retardant (DPA-SiN) containing phosphorus, nitrogen and silicon elements was synthesized. The halogen free flame retardant was incorporated into PC/ABS to improve its flame retardancy. The flame-retardant properties of the PC/ABS/DPA-SiN blends were estimated by limiting oxygen index (LOI) values and CONE Calorimeter, while thermal stabilities were investigated through thermo gravimetric analysis (TGA). The PC/ABS/DPA-SiN blends were thermally degraded at 400 °C for different amounts of time and studied by Fourier transform infrared spectroscopy (FTIR) to better understand the degradation behavior of PC/ABS/DPA-SiN.
Bismuth titanate (Bi4Ti3O12) platelets were prepared by molten salt method in a new salt system of CaCl2-NaCl at 650–750 °C, using bismuth nitrate pentahydrate (Bi(NO3)3―H2O) and titanium butoxide (Ti (OC4H9)4) as raw materials. The synthesis temperature of Bi4Ti3O12 platelets was decreased to 650 °C from 900–1100 °C. The phase compositions and crystalline morphology of Bi4Ti3O12 platelets were investigated by XRD and SEM. The experimental results indicate that Bi4Ti3O12 platelets containing tetragonal and orthorhombic phase with the size of 1–3 μm can be synthesized at 650 °C for 2 h, and the orthorhombic phase becomes the dominant phase at 750 °C for 5 h. The size and proportion of Bi4Ti3O12 platelets increase with the increment of the calcining temperature and holding time. The proportion of platelets increases to about ninety percent, and the platelets grow up to about 3–10 μm at 750 °C for 5 h from 1–2 μm at 650 °C for 2 h. This technical route provides a new low-temperature molten salt system for preparing platelets by molten salt methods.
Novel Nb2O5 nanorods and polygonal Nb2O5 platelets were generated by a simple solvothermal technique. The geometry evolution of the resultant Nb2O5 from amorphous nanoparticles to crystallized particles, from polygonal platelets to well-elongated nanorods was been studied in detail. The processing parameters, including the reaction temperature, reaction time, concentration of the precursors, and pH value of the solution, which affect the shape and size of the nanorods, were investigated. The Nb2O5 nanorods with different aspect ratios were examined by XRD, SEM and TEM. The experimental results show that Nb2O5 nanorod is the orthorhombic structure and well-crystallized. The growth of the nanorods follows their [001] direction. The successful generation of high quality Nb2O5 nanorods is not only important for transition metal oxide research, but also potentially important for further formation of new Nb-based 1-D nanostructures, such as NbS2 and NbN.
A solution method was developed for fabricating ZnO nanostructures using (NH4)2CO3 as starting material. SEM analysis shows that ZnO nanostructures exhibit nanorod, branch and flower-like morphologies. The crystal phase of as-synthesized products was characterized by X-ray diffraction (XRD). The growth process, formation mechanism and optical property were also discussed by means of transmission electronic microscopy (TEM), high resolution transmission microscopy (HRTEM) and photoluminescence (PL). The growth direction of ZnO nanostructures was investigated based on the results of HRTEM. The PL spectrum shows two strong peaks (centered at around ∼387 and ∼470 nm) and a broad peak (centered at around ∼580 nm).
In order to improve wear resistance and decrease the cost, carbon and carbon nanotubes reinforced copper matrix composites were fabricated by the power metallurgy method. The effects of carbon (carbon and carbon nanotubes) volume fraction and applied load on the friction coefficient and wear rate under dry sliding of the composites were investigated at room temperature. By scanning electron microscopy (SEM), the worn surfaces and debris were observed, and wear mechanism was also analyzed and discussed. The experimental wear process consists of the run-in, steady wear and severe wear process with the increasing of sliding distance. Both the friction coefficient and wear rate of the composites first decrease and then increase with the increasing of carbon volume fraction. The minimum friction coefficient and wear rate are obtained when carbon is 4.0vol%. The wear mechanisms of the composites change from the adhesive wear and delamination wear to abrasive wear with the increasing of carbon volume fraction.
The Ag particles were photodeposited on TiO2 powder surface. The X-ray diffraction (XRD), Raman spectroscopy, transmittance electron microscopy (TEM), UV-vis diffused reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectrophotoscopy were used to investigate the structure and morphologies of the samples. It is found that the loaded Ag particles have no effect on the XRD patterns, and the Raman scattering becomes much stronger due to the surface Raman enhancing effect. The TEM images show that the TiO2 grains are in the shape of short sticks, and the spherical Ag particles with hexagonal structure are adhered to the TiO2 grain surface tightly. XPS result shows that the loaded Ag particles can not affect the chemical states of Ti and O, and they are mainly in the form of metal Ag. A wide plasmon absorption appears on the UV-vis spectra after Ag photodeposition. The loaded Ag further greatly decreases the PL intensity, which partly indicates the electron transfer from TiO2 to Ag. The photocatalytic activities firstly increase with the content of loaded Ag, and then sharply decrease. Finally, the photocatalytic mechanism related to Ag-loaded TiO2 powders was discussed in detail.
Electroluminescence (EL) of organic light emitting diodes (OLEDs) with a configuration of ITO/TPD/BC/Alq3/Mg-Ag, where TPD, BC and Alq3 represent N, N′-diphenyl-N, N′-bis (3-methylphenyl)-1,1′-biphenyl-4,4′-diamine, bathocuproine and tris(8-quinolinolato)aluminum(III), respectively, was investigated in comparison with the photoluminescence (PL) of the individual organic layers. The EL spectra of the OLEDs were found to be much different from the PL spectra of the component multiple layer structure. Each organic layer made its contribution to the light emitted from the OLEDs. Their individual contributions were related to the field distribution across the device, which was in turn dependent on the thickness of each organic layer and the applied bias voltages. Consequently, the EL spectra of the OLEDs were observed to vary as the relative thickness of any organic layer was changed and as the bias voltage was alternated. The variation of the EL spectra of the device resulted in the easiness of achieving variable colors emitted by the device, from blue to green, and then to near white light.
Heterogeneous composite BaZr0.1Y0.9O2.95/Na2SO4 was designed and fabricated with Y-doped BaZrO3 as matrix and Na2SO4 as dispersant by conventional powder processing to improve the total conductivity of barium zirconate. The electrical conduction of the composite was studied by electrical and electrochemical methods. Microstructure of the heterogeneous composite was examined by SEM. The experimewtal results show that the protonic conductivity of Y-doped BaZrO3 is greatly improved upon incorporating Na2SO4 in the material. Microstructure observation indicates that a multiphase structure with Na2SO4 disperses at the grain boundaries of BaZr0.1Y0.9O2.95. Electromotive force (EMF) measurements under fuel cell conditions reveal that the total ionic transport number of the composite is more than 0.9 at 750 °C.
The friction and wear properties of silicon surface covered with octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) were investigated by a UMT-2 microtribometer with and without water as lubricant, and then compared with that of bare silicon surface. Dry friction measurement results show that OTS SAMs have a very low friction coefficient compared to bare silicon surface under lower sliding velocity and normal contact load. However, heavy wear occurs on OTS SAMs under higher contact stress and sliding velocity. Under water lubrication, OTS SAMs can prevent wear obviously and meanwhile present low coefficient of friction even under high velocities. The improved frictional and anti-wear property on OTS SAMs surface is attributed to the hydrophobic property of OTS and hydrodynamic effect of water. Furthermore, a wear critical phase diagram for OTS SAMs with and without water was proposed, which indicates that OTS SAMs working under water lubrication owns a wider range of available load and velocity to reduce friction and prevent wear.
Relation between doping and texture and property of tantalum bar and wire was carefully investigated by optical microscope, SEM fractograph, electron microprobe analysis, density test, observation of TEM and mechanical property test at room temperature. It is illustrated that the grain of tantalum bar after sintering reduces with the increasing of dopant quantity, and the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge, even that sintering is becoming insufficient and the density of tantalum bar tends to be lower with the increaseing of dopant Ce. The recrystallization temperature of tantalum wire increases and the grain of texture reduces with the increaseing of dopants quantity. The tensile strength of tantalum wire at room temperature increases with the increasing of dopants quantity, while its elongation decreases with the increase of dopant Ge quantity and rises with theincrease of dopant Ce quantity. And the strengthening effect of dopant Ce is clearer than that of dopant Ge.
The effect of tin on synthesis of Ti3AlC2 by spark plasma sintering (SPS) from TiC/Ti/Al powders was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for phase identification and microstructure evaluation. The experimental results show that addition of tin can considerably accelerate the synthesis reaction of Ti3AlC2 and fully dense, essentially single-phase polycrystalline Ti3AlC2 could be successfully obtained by sintering 2TiC/1Ti/1Al/0.2Sn powders at 1200–1250 °C under a pressure of 30 MPa. SEM images show that Ti3AlC2 samples in about 2–5 μm thick and 10–25 μm long platelets can be obtained. The fracture toughness and flexural strength of Ti3AlC2 were 6.5±0.2 MPa·m1/2 and 560±10 MPa, respectively.
PEDOT nanotubes were prepared by a template synthesis method. Based on our template, it was deduced that there are two successive processes in the formation of nanotubes. The first step is soakage of the porous templates by a polymer solution, and the second step is adsorption of free charged cationic groups and doped PEDOT onto the template surface with negative charges. XRD results showed that well orientated PEDOT chains were formed during the synthesis, moreover the arrange conductivity of molecular chains strongly affect the structures of PEDOT nanotubes. The nanotubes were measured to be about 5.5–17.6 S/cm, which is higher than that of nanotube pellet due to the high contact resistance between the adjacent nanotubes.
2-Cetyl-3-20 keto acid(N-ethyl perfluorinated octyl sulfonamide) N- ethyl ester was synthesized by the reaction of N-ethyl-N-hydroxyethyl perfluorinated octyl sulfonamide and alky ketene dimer. The experimental results show that the yield of products can be 89% when the molar ratio of perfluorinated octyl sulfonamide to ketene dimer is 1:1.1 and the reaction lasts about four hours at 80 °C. The structure of the product was characterized by FTIR and 1HNMR. The product can dissolve in polar solvents such as NMP, DMAC, THF, DMSO, CHCl3, and 10% weight-loss temperature measured by TGA is 202 °C.
Vinylester (bismethacryloxy derivative of a bisphenol-A type EP resin, VE) composites with glass-carbon hybrid fibers (CF-GF) weight fraction of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers’ conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20 °C to 240 °C is less than 1.96%.
The sol-gel method was adopted to prepare series of La2/3Ca1/3Mn0.98Cu0.02O3 samples sintered at different temperatures, and the structure of samples, high-temperature electrical conductive mechanism and electronic transport properties of double-peak resistance were investigated. X-ray diffraction pattern indicates that the samples are in perovskite structures and obey the Variable-Rang Hopping Mechanism of ρ=ρ 0exp[(T 0/T)1/4] under high temperatures during the electrical conduction. In addition, based on the polycrystalline granular system surface and image, the reasonable explanation was given for the double-peak resistance phemomenon.
Calcia stabilized zirconia(CSZ) ceramics were prepared with 7wt% calcia-stabilized zirconia powder by pressureless sintering technology. The crystal phases of the sintered samples were studied by X-ray diffraction(XRD) and Raman spectroscopy techniques, and the microstructures of the fracture surfaces were observed by scanning electron spectroscopy(SEM). The phase compositions and the lattice parameters of cubic calcia-stabilized zirconia were calculated by XRD patterns. As the sintering temperature increasing from 1400 °C to 1600 °C, the monoclinic zirconia content decreases gradually, finally all monoclinic phase transforms to cubic calcia-stabilized zirconia, which is determined to be Ca0.134Zr0.866O1.866. It is revealed that monoclinic zirconia is the main factor causing minute cracks on the surface of sintered samples, and the combination of the XRD patterns and Raman spectra is an effective way to research the phase transformations of zirconia.
The chemical resistances of float-glasses subjected to different electric field strength and temperature were investigated. It is indicated that the chemical resistance increases after the float-glasses are annealed with suitable temperature and electric field strength. It is also observed that the Na+ content varies obviously under the conditions of 570 °, 1500 V/cm and 10 min, implying that the application of thermal/electric field improves the chemical resistance of float-glass online.
The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated. Ground blast furnace slag, coal fly ash and silica fume were used as reference materials. The replacement of cement with 25% glass powder slightly decreases the strengthes at 7 and 28 d, but shows no effect on 90 d’s. Silica fume is very effective in improving both the strength and chloride penetration resistance, while ground glass powder is much more effective than blast furnace slag and fly ash in improving chloride penetration resistance of the concrete. When expanded shale or clay is used as coarse aggregate, the concrete containing glass powder does not exhibit deleterious expansion even if alkali-reactive sand is used as fine aggregate of the concrete.
Three beam samples of bridge deck pavement were prepared, with gradation types of AC-13, and AC-16 and combined AC-13+AC-16. Four-point bending test was adopted to investigate the fatigue performance of these beam samples. The experimental results indicate that the initial bending stiffness is related to the type of beam sample and testing temperature. Fatigue life of these samples decreases as the increase of the controlled strain level. The AC-13 beam sample exhibits better fatigue resistance and bigger limiting bending strain at the given strain level and temperature. Compared with single beam sample, the fatigue performance of combining beam sample is relatively poor.
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable.
On the basis of analyzing coal gangue’s chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 °C disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.
A new method was used to evaluate the fatigue properties of the bonding layer used in the bridge deck pavement. The shear fatigue test of three bonding layers was conducted on a dynamic shear rheometer(DSR). The fatigue formulas were gained for these layers. The experimental results indicate that, at the same torque level or at the same frequency, neoprene latex asphalt bonding layer exhibits excellent fatigue performance when compared to other two bonding layers.
Based on the experimental investigation by quantitative analysis, temperature fields of the molten glass in tin bath were numerically simulated by the finite elememt method. The experimental results show that the cooling rate of glass is directly proportional to the draught speed, but inversely proportional to the thickness of the glass. This model lays the foundation for computer simulation system about float glass.