High-cycle fatigue life extension of glass fiber/polymer composites with carbon nanotubes

Christopher S. Grimmer , C. K. H. Dharan

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 167 -173.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 167 -173. DOI: 10.1007/s11595-009-2167-4
Article

High-cycle fatigue life extension of glass fiber/polymer composites with carbon nanotubes

Author information +
History +
PDF

Abstract

The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon nanotubes tend to inhibit the formation of large cracks by nucleating nano-scale damage zones. In addition, the contribution to energy absorption from the fracture of nanotubes bridging across nano-scale cracks and from nanotube pull-out from the matrix are mechanisms that can improve the fatigue life. An energy-based model was proposed to estimate the additional strain energy absorbed in fatigue. The distributed nanotubes in the matrix appear to both distribute damage as well as inhibit damage propagation resulting in an overall improvement in the fatigue strength of glass fiber composites.

Keywords

glass fiber / composites / carbon nanotubes / fatigue / strain energy

Cite this article

Download citation ▾
Christopher S. Grimmer, C. K. H. Dharan. High-cycle fatigue life extension of glass fiber/polymer composites with carbon nanotubes. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(2): 167-173 DOI:10.1007/s11595-009-2167-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dharan C.K.H. Fatigue Failure Mechanisms in a Unidirectionally Reinforced Composite Material[M]. ASTM Spec. Tech. Publ., 1975, 569: 171

[2]

Dharan C.K.H. Fatigue Failure in Graphite Fibre and Glass Fibre-polymer Composites[J]. J. Mater. Sci., 1975, 10: 1 655

[3]

Hahn H.T., Kim R.Y. Fatigue Behavior of Composite Laminate[J]. J. Compos. Mater., 1976, 10: 156

[4]

Degrieck J., Van Paepegem W. Fatigue Damage Modeling of Fibre-reinforced Composite Materials: Review[J]. Appl. Mech. Rev., 2001, 54(4): 279

[5]

Saghizadeh H., Dharan C.K.H. Delamination Fracture Toughness of Graphite and Aramid-epoxy Composites[J]. J. Eng. Mater. Tech.: Trans. ASME, 1986, 108(4): 290

[6]

Ren Y., Lil F., Cheng H.M., . Fatigue Behaviour of Unidirectional Single-walled Carbon Nanotube Reinforced Epoxy Composite under Tensile Load[J]. Adv. Compos. Lett., 2003, 12(1): 19

[7]

Ganguli S., Aglan H. Effect of Loading and Surface Modification of MWCNTs on the Fracture Behavior of Epoxy Nanocomposites[J]. J. Reinforc. Plast. Compos., 2006, 25(2): 175

[8]

Grimmer C.S., Dharan C.K.H. High-cycle Fatigue of Hybrid Carbon Nanotube/Glass Fiber/Polymer Composites[J]. J. Mater. Sci., 2008, 43: 4487

[9]

Gojny F.H., Wichmann M.H.G., Fiedler B., . Influence of Nano-modification on the Mechanical and Electrical Properties of Conventional Fibre-reinforced Composites[J]. Compos. A, 2005, 36: 1525

[10]

Kim J.A., Seong D.G., Kang T.J., . Effects of Surface Modification on Rheological and Mechanical Properties of CNT/Epoxy Composites[J]. Carbon, 2006, 44: 1898

[11]

Wong M., Paramsothy M., Xu X.J., . Physical Interactions at Carbon Nanotube-polymer Interface[J]. Polym., 2003, 44(25): 7757

[12]

Fan Z., Hsiao K.T., Advani S.G. Experimental Investigation of Dispersion during Flow of Multi-walled Carbon Nanotube/Polymer Suspension in Fibrous Porous Media[J]. Carbon, 2004, 42: 871

[13]

Schadler L.S., Giannaris S.C., Ajayan P.M. Load Transfer in Carbon Nanotube Epoxy Composites[J]. Appl. Phys. Lett., 1998, 73: 3842

[14]

Wagner H.D., Lourie O., Feldman Y., . Stress-induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix[J]. Appl. Phys. Lett., 1998, 72: 188

[15]

Lordi V., Yao N. Molecular Mechanics of Binding in Carbon-nanotube-polymer Composites[J]. J. Mater. Res., 2000, 15: 2770

[16]

Jiang H., Liu B., Huang Y., . Thermal Expansion of Single Wall Carbon Nanotubes[J]. J. Eng. Mater. Technol., 2004, 126: 265

[17]

Budiansky B., Hutchinson J.W., Evans A.G. Matrix Fracture in Fiber-reinforced Ceramics[J]. J. Mech. Phys. Solids, 1986, 34: 167

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/