Spectra and DNA-binding properties of two novel mixed-ligand complexes containing organosulfonate

Mingtian Li , Jun Huang , Xuan Zhou , Hua Fang , Liyun Ding

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 181 -185.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 181 -185. DOI: 10.1007/s11595-009-2181-6
Article

Spectra and DNA-binding properties of two novel mixed-ligand complexes containing organosulfonate

Author information +
History +
PDF

Abstract

Two novel mixed-ligand complexes, [M(phen)2(ans)2]·H2O (M = Cd(II) 1, Zn(II) 2; phen is 1, 10-phenanthroline, and ans is 4-aminonaphthalene-1-sulfonate), were obtained from the reaction of 1, 10-phenanthroline, sodium 4-aminonaphthalene-1-sulfonate tetrahydrate and acetate in mixed solvents. Interaction of the complexes with calf thymus DNA (ctDNA) were investigated using UV-vis absorption spectra, luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide (EB) and viscosity measurements. The experimental results indicate that there exist two interaction modes between the complexes and DNA, namely the electrostatic interaction and intercalation, with the binding constants of 1.82 × 105 M−1 for 1 and 4.78 × 104 M−1 for 2 in buffer of 50 mM NaCl and 5 mM Tris-HCl (pH 7.0).

Keywords

ctDNA / mixed-ligand complex / interaction mode

Cite this article

Download citation ▾
Mingtian Li, Jun Huang, Xuan Zhou, Hua Fang, Liyun Ding. Spectra and DNA-binding properties of two novel mixed-ligand complexes containing organosulfonate. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(2): 181-185 DOI:10.1007/s11595-009-2181-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Demeunynck M., Bailly C., Wilson W. D. DNA and RNA Binders[M], 2000 Weinheim Wiley-VCH

[2]

Decker M. Metal Tons in Biological Systems[M], 1996, 33: 177-252.

[3]

Erkkilia K. E., Odom D. T., Barton J. K. Recognition and Reaction of Metallointercalators with DNA[J]. Chem. Rev., 1999, 99: 2777-2796.

[4]

Balzani V., Juris A., Venturi M., . Luminescent and Redox-Active Polynuclear Transition Metal Complexes[J]. Chem. Rev., 1996, 96: 759-834.

[5]

H Xu, K Z Zheng, Y Chen, et al. Effects of Ligand Planarity on the Interaction of Polypyridyl Ru(II) Complexes with DNA[J]. J. Chem. Soc., Dalton Trans., 2003: 2260–2268

[6]

Xiong Y., Ji L. N. Synthesis, DNA-binding and DNA-mediated Luminescence Quenching of Ru(II) Polypyridine Complexes[J]. Coord. Chem. Rev., 1999, 185–186: 711-733.

[7]

Liu J. G., Zhang Q. L., Shi X. F., . Interaction of [Ru(dmp)2(dppz)]2+ and [Ru(dmb)2(dppz)]2+ with DNA: Effects of the Ancillary Ligands on the DNA-Binding Behaviors[J]. Inorg. Chem., 2001, 40: 5045-5050.

[8]

X H Zou, B H Ye, H Li, et al. Mono- and Bi-nuclear Ruthenium(II) Complexes Containing a New Asymmetric Ligand 3-(pyrazin-2-yl)-as-triazino[5,6-f]1,10-phenanthroline: Synthesis, Characterization and DNA-binding Properties[J]. J. Chem. Soc., Dalton Trans., 1999: 1423–1428

[9]

Lerman L. S. The Structure of the DNA-acridine Complex[J]. Proc. Natl. Acad. Sci. USA, 1963, 49: 94-102.

[10]

Li M. T., Huang J., Zhou X., Wang C. G. Syntheses, Characterization, Crystal Structures and DNA-binding Properties of Two Complexes Containing Organosulfonate Ligand[J]. Chin. J. Inorg. Chem., 2008, 24: 1794-1802.

[11]

Reichmann M. E., Rice S. A., Thomas C. A., . A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid[J]. J. Am. Chem. Soc., 1954, 76: 3047-3053.

[12]

Satyanarayana S., Daborusak J. C., Chaires J. B. Tris(phenanthroline) ruthenium(II) Enantiomer Interactions with DNA: Mode and Specificity of Binding[J]. Biochem., 1993, 32: 2573-2584.

[13]

Geary W. J. The Use of Conductivity Measurements in Organic Solvents for the Characterization of Coordination Compounds[J]. Coord. Chem. Rev., 1971, 7: 81-122.

[14]

Barton J. K., Danishefsky A. T., Golderg J. M. Tris(phenanthroline)ruthenium(II): Stereoselectivity in Binding to DNA[J]. J. Am. Chem. Soc., 1984, 106: 2172-2176.

[15]

Wolfe A., Shimer G. H., Meehan T. Polycyclic Aromatic Hydrocarbons Physically Intercalate into Duplex Regions of Denatured DNA[J]. Biochem., 1987, 26: 6392-6396.

[16]

Pyle A. M., Rehmann J. P., Meshoyrer R., . Mixed-ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA[J]. J. Am. Chem. Soc., 1989, 111: 3051-3058.

[17]

Haq I. H., Lincoln P., Suh D., . Interaction of Λ- and Δ-[Ru(phen)2DPPZ]2+ with DNA: A Calorimetric and Equilibrium Binding Study[J]. J. Am. Chem. Soc., 1995, 117: 4788-4796.

[18]

Boger D. L., Fink B. E., Brunette S. R., . A Simple, High-Resolution Method for Establishing DNA Binding Affinity and Sequence Selectivity[J]. J. Am. Chem. Soc., 2001, 123: 5878-5891.

[19]

Horton D. A., Bourne G. T., Smythe M. L. The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures[J]. Chem. Rev., 2003, 103: 893-930.

[20]

Kelly J. M., Tossi A. B., Meconnell D. J., . A Study of the Interactions of Some Polypyridylruthenium(II) Complexes with DNA using Fluorescence Spectroscopy, Topoisomerisation and Thermal Denaturation[J]. Nucleic Acids Res., 1985, 13: 6017-6034.

[21]

Friedman R. A., Manning G. S. Polyelectrolyte Effects on Site-binding Equilibria with Application to the Intercalation of Drugs into DNA[J]. Biopolymers, 1984, 23: 2671-2714.

[22]

Fang Y. Y., Ray B. D., Caussen C. A., . Ni(II)·Arg-Gly-His-DNA Interactions: Investigation into the Basis for Minor-Groove Binding and Recognition[J]. J. Am. Chem. Soc., 2004, 126: 5403-5412.

[23]

Kumar C. V., Barton J. K., Turro M. J. Photophysics of Ruthenium Complexes Bound to Double Helical DNA[J]. J. Am. Chem. Soc., 1985, 107: 5518-5523.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/