Electrical resistance behavior of vinylester composites filled with glass-carbon hybrid fibers

Jun Wang , Lianmeng Zhang , Renxin Xu , Huajun Duan , Xiaoli Yang , Xiang Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 295 -299.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 295 -299. DOI: 10.1007/s11595-009-2295-x
Article

Electrical resistance behavior of vinylester composites filled with glass-carbon hybrid fibers

Author information +
History +
PDF

Abstract

Vinylester (bismethacryloxy derivative of a bisphenol-A type EP resin, VE) composites with glass-carbon hybrid fibers (CF-GF) weight fraction of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers’ conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20 °C to 240 °C is less than 1.96%.

Keywords

conducting composite / hybrid fibers / resistivity-temperature coefficient / synergy effect

Cite this article

Download citation ▾
Jun Wang, Lianmeng Zhang, Renxin Xu, Huajun Duan, Xiaoli Yang, Xiang Wang. Electrical resistance behavior of vinylester composites filled with glass-carbon hybrid fibers. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(2): 295-299 DOI:10.1007/s11595-009-2295-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Di W. H., Zhang G. Resistivity-temperature Behavior of Carbon Fiber Filled Semicrystalline Composites[J]. J. Appl. Polym. Sci., 2004, 91: 1222-1228.

[2]

Clingerman M. L., Weber E. H., King J. A. Synergistic Effects of Carbon Fillers in Electrically Conductive Nylon 6,6 and Polycarbonate based Resins[J]. Polym. Comp., 2002, 23: 911-924.

[3]

Zhang C., Yi X. S., Yui H., . Morphology and Electrical Properties of Short Carbon Fiber-filled Polymer Blends: High-density Polyethylene/poly(methyl methacrylate)[J]. J. Appl. Polym. Sci., 1998, 69: 1813-1819.

[4]

Malliaris A., Turner D. T. Influence of Particle Size on Electrical Resistivity of Compacted Mixtures of Polymeric and Metallic Powders[J]. J. Appl. Phys., 1971, 42: 614-618.

[5]

Narkis M., Ram A., Stein Z. Electrical Properties of Carbon Black Filled Crosslinked Polyethylene[J]. Polym. Eng. Sci., 1981, 21: 1049-1054.

[6]

Yi X. S., Zhang J. F., Zheng Q., . Irradiation Influence on the Resistivity Behavior of Carbon Black Loaded Polyethylene Composites[J]. J. Mater. Sci. Lett., 1999, 18: 1213-1215.

[7]

Li Y., Wang S. F., Zhang Y., . Electrical Properties and Morphology of Ppolypropylene/epoxy/glass Fiber Composites Filled with Carbon Black[J]. J. Appl. Polym. Sci., 2005, 98: 1142-1149.

[8]

Ng H. Y., Lu X. H., Lau S. K. Thermal Conductivity, Electrical Resistivity, Mechanical, and Rheological Properties of Thermoplastic Composites Filled with Boron Nitride and Carbon Fiber[J]. Polym. Comp., 2005, 26: 66-73.

[9]

Wang Y., Huang J. H., Zhang C. G., . Determination of Hydrogen Peroxide in Rainwater by Using a Polyaniline Film and Platinum Particles Co-Modified Carbon Fiber Microelectrode[J]. Electroanalysis, 1998, 10: 776-778.

[10]

Das N. C., Chaki T. K., Khastgir D., . Electromagnetic Interference Shielding Effectiveness of Conductive Carbon Black and Carbon Fiber-filled Composites based on Rubber and Rubber Blends[J]. Adv. Polym. Techn., 2001, 20: 226-236.

[11]

Paul A., Thomas S. Electrical Properties of Natural-fiber-reinforced Low Density Polyethylene Composites: A Comparison with Carbon Black and Gglass-fiber-filled Low Density Polyethylene Composites[J]. Appl. Polym. Sci., 1997, 63: 247-266.

[12]

Lu G. H., Li X. T., Jiang H. C., . Electrical Conductivity of Carbon Fibers/ABS Resin Composites Mixed with Carbon Blacks[J]. J. Appl. Polym. Sci., 1996, 62: 2193-2199.

[13]

Hovorun T., Chornous A. Thin Overlayer Influence on Electrophysical Properties of Nickel Films[J]. Cryst. Res. Technol., 2006, 41: 458-463.

[14]

Chornous A., Protsenko I., Shpetnyi I. Electrophysical Properties of Double-layer Nickel-base and Vanadium-base Films within the Intermediate Temperature Range[J]. Cryst. Res. Technol., 2004, 39: 602-610.

[15]

Di W. H., Zhang G., Xu J. Q., . Positive-temperature-coefficient/negative-temperature-coefficient Effect of Low-density Polyethylene Filled with a Mixture of Carbon Black and Carbon Fiber[J]. J. Polym. Sci.(B): Polym. Phys., 2003, 41: 3094-3101.

[16]

Boiteux G., Boullanger C., Cassagnau P., . Influence of Morphology on PTC in Conducting Polypropylene-silver Composites[J]. Macromol. Symp., 2006, 233: 246-253.

[17]

Xie H. F., Deng P. Y., Dong L. S., . LDPE/carbon Black Conductive Composites: Influence of Radiation Crosslinking on PTC and NTC Properties[J]. J. Appl. Polym. Sci., 2002, 85: 2742-2749.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/