Preparation, characterization and photocatalytic property of Ag-loaded TiO2 powders using photodeposition method

Liping Wen , Baoshun Liu , Chao Liu , Xiujian Zhao

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 258 -263.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 258 -263. DOI: 10.1007/s11595-009-2258-2
Article

Preparation, characterization and photocatalytic property of Ag-loaded TiO2 powders using photodeposition method

Author information +
History +
PDF

Abstract

The Ag particles were photodeposited on TiO2 powder surface. The X-ray diffraction (XRD), Raman spectroscopy, transmittance electron microscopy (TEM), UV-vis diffused reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectrophotoscopy were used to investigate the structure and morphologies of the samples. It is found that the loaded Ag particles have no effect on the XRD patterns, and the Raman scattering becomes much stronger due to the surface Raman enhancing effect. The TEM images show that the TiO2 grains are in the shape of short sticks, and the spherical Ag particles with hexagonal structure are adhered to the TiO2 grain surface tightly. XPS result shows that the loaded Ag particles can not affect the chemical states of Ti and O, and they are mainly in the form of metal Ag. A wide plasmon absorption appears on the UV-vis spectra after Ag photodeposition. The loaded Ag further greatly decreases the PL intensity, which partly indicates the electron transfer from TiO2 to Ag. The photocatalytic activities firstly increase with the content of loaded Ag, and then sharply decrease. Finally, the photocatalytic mechanism related to Ag-loaded TiO2 powders was discussed in detail.

Keywords

Ag-TiO2 / photodeposition / photocatalysis

Cite this article

Download citation ▾
Liping Wen, Baoshun Liu, Chao Liu, Xiujian Zhao. Preparation, characterization and photocatalytic property of Ag-loaded TiO2 powders using photodeposition method. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(2): 258-263 DOI:10.1007/s11595-009-2258-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mills A., Hunte S. L. An Overview of Semiconductor Photo-catalysis[J]. J. Photochem. Photobio. A: Chem., 1997, 108(1): 1-35.

[2]

Linsebigler A. L., Lu G. Q., Yates J. T. Jr Interfacial Photochemistry, Fundamentals and Applications[J]. Chem. Rev., 1995, 95(3): 735-758.

[3]

Hoffmann M. R., Martin S. T., Choi W.Y., . Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95(1): 69-96.

[4]

Livraghi S., Paganini M. C., Giamello E., . Origin of Photoactivity of N Doped TiO2 under Visible Light[J]. J. Am. Chem. Soc., 2008, 128(49): 15666-15671.

[5]

Yu J. C., Ho W., Yu J., . Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania.Environ[J]. Sci. Technol., 2005, 39(4): 1175-1179.

[6]

Zhao W., Ma W., Chen C., . Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2−xBx under Visible Irradiation[J]. J. Am. Chem. Soc., 2004, 126(15): 4782-4783.

[7]

Zhu J. F., Chen F., Zhang J. L., . Fe3+-TiO2 Photocatalysts Prepared by Combining Sol-gel Method with Hydrothermal Treatment and Their Characterization[J]. J. Photochem. Photobio. A: Chem., 2006, 180(1–2): 196-204.

[8]

Klosek S., Raftery D. Visible Light Driven V-doped TiO2 Photocatalyst and its Photooxidation of Ethanol[J]. J. Phys. Chem. B, 2001, 105(14): 2815-2819.

[9]

Kesselman J. M., Weres O., Lewis N. S., . Electrochemical Production of Hydroxyl Radical at Polycrystalline Nb-droped TiO2[J]. J. Phys. Chem. B, 1997, 101(14): 2637-2643.

[10]

Zhang W. G., liu Y., wang B., . Preparation of Nano-crystalline TiO2 Film Modified Ni-W-P Electrode and Its Photoelectrocatalytic Activity for Hydrogen Evolution Reaction[J]. J. Inorg. Mater., 2007, 22(4): 765-768.

[11]

Bamwenda G. R., Uesigi T., Abe Y., . The Photocatalytic Oxidation of Water to O2 over Pure CeO2, WO3, and TiO2 Using Fe3+ and Ce4+ as Electron Acceptors[J]. Appl. Catal., A, 2001, 205(1–2): 117-128.

[12]

Yu J. C., Yu J. G., Zhang L. Z., . Enhancing Effects of Water Content and Ultrasonic Irradiation on the Photocatalytic Activity of Nano-sized TiO2 powders[J]. J. Photochem. Photobio. A: Chem., 2002, 148(1–3): 263-271.

[13]

Guin D., Manorama S. V., Latha J. N. L., . Photoreduction of Silver on Bare and Colloidal TiO2 Nanoparticles/Nanotubes: Synthesis, Characterization, and Tested for Antibacterial Outcome[J]. J. Phys. Chem. C, 2007, 111(36): 13393-13397.

[14]

Kikuchi H., Kitano M., Takeuchi M., . Extending the Photoresponce of TiO2 to the Visible Light Region: Photoelectrochemical Behavior of TiO2 Thin Films Prepared by the Radio Frequency Magnetron Sputtering Deposition Method[J]. J. Phys. Chem. B, 2006, 110(11): 5537-5541.

[15]

Sahyun M. R. V., Serpone N. Primary Events in the Photocatalytic Deposition of Silver on Nanoparticulate TiO2[J]. Langmuir, 1997, 13(19): 5082-5088.

[16]

Chan S. C., Barteau M. A. Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition[J]. Langmuir, 2005, 21(12): 5588-5595.

[17]

Bae E. Y., Choi W. Y. Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2 under Visible Light[J]. Environ. Sci. Technol., 2003, 37(1): 147-152.

[18]

Tada H., Ishida T., Takao A., . Drastic Enhancement of TiO2-Photocatalyzed Reduction of Nitrobenzene by Loading Ag Clusters[J]. Langmuir, 2004, 20(19): 7898-7900.

[19]

Hu C., Lan Y. Q., Qu J. H., . Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria[J]. J. Phys. Chem. B, 2006, 110(9): 4066-4072.

[20]

Grunert W., Bruckner A., Hofmeister H., . Structural Properties of Ag/TiO2 Catalysts for Acrolein Hydrogenation[J]. J. Phys. Chem. B, 2004, 108(18): 5709-5717.

[21]

Hirakawa T., Kamat P. V. Charge Separation and Catalytic Activity of Ag-TiO2 Core-Shell Composite Clusters under UV-Irradiation[J]. J. Am. Chem. Soc., 2005, 127(11): 3928-3934.

[22]

Jin M., Zhang X. T., Nishimoto S., . Light-Stimulated Composition Conversion in TiO2-Based Nanofibers[J]. J. Phys. Chem. C, 2007, 111(2): 658-665.

[23]

Naoi K., Ohko Y., Tatsuma T. TiO2 Films Loaded with Silver Nanoparticles: Control of Multicolor Photochromic Behavior[J]. J. Am. Chem. Soc., 2004, 126(11): 3664-3668.

[24]

Liu B. S., Zhao X. J., Wen L. P. The Structural and Photoluminescence Studies Related to the Surface of the TiO2 Sol Prepared by Wet Chemical Method[J]. Mater. Sci. Eng. B, 2006, 134(1): 27-31.

[25]

Emeline A. V., Ryabchuk V. K., Serpone N. Dogmas and Misconceptions in Heterogeneous Photocatalysis. Some Enlightened Reflections[J]. J. Phys. Chem. B, 2005, 109(39): 18515-18521.

[26]

Zhang Q. H., Gao L. Preparation and the Enhanced Photocatalytic Activity of Highly Dispersed Pt Loaded on TiO2 Nanocrystals[J]. Acta Chim. Sinica, 2005, 63(1): 65-70.

[27]

Kerker M., Blatchford C. G. Elastic Scattering and Absorption, and Surface-enhanced Raman Scattering by Concentric Spheres Comprised of A Metallic and Dielectric Region[J]. Phys. Rev. B, 1982, 26(8): 4052-4063.

[28]

Liu B. S., Zhao X. J., Zhao Q. N., . The Effect of O2 Partial Pressure on the Structure and Photocatalytic Property of TiO2 Films Prepared by Sputtering[J]. Mater. Chem. Phys., 2005, 90(1): 207-212.

[29]

He X., Zhao X. J., Liu B. S. Studies on A Possible Growth Mechanism of Silver Nanoparticles Loaded on TiO2 Thin Films by Photoinduced Deposition Method[J]. J. Non-Cryst. Solids, 2008, 354(12–13): 1267-1271.

[30]

Liu B. S., Wen L. P., Zhao X. J. The Photoluminescence Spectroscopic Study of Anatase TiO2 Prepared by Magnetron Sputtering[J]. Materials Chemistry and Physics, 2007, 106(2–3): 350-353.

[31]

Miller T. M. Handbook of Chemistry and Physics[M], 1993 80th Ed Washington CRC Press 12

[32]

Sadeghi M., Liu W., Zhang T. G., . Role of Photoinduced Charge Carrier Separation Distance in Heterogeneous Photocatalysis: Oxidative Degradation of CH3OH Vapor in Contact with Pt/TiO2 and Cofumed TiO2-Fe2O3[J]. J. Phys. Chem., 1996, 100(50): 19466-19474.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/