Electrocatalytic activity of tungsten trioxide microspheres, tungsten carbide microspheres and multi-walled carbon nanotube-tungsten carbide composites

Hongzhi Lu , Taining Yan

Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 229 -234.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2009, Vol. 24 ›› Issue (2) : 229 -234. DOI: 10.1007/s11595-009-2229-7
Article

Electrocatalytic activity of tungsten trioxide microspheres, tungsten carbide microspheres and multi-walled carbon nanotube-tungsten carbide composites

Author information +
History +
PDF

Abstract

Tungsten trioxide micropheres were prepared by spray pyrolysis, and tungsten carbide microspheres were produced by spray pyrolysis-low temperature reduction and carbonization technology. Multi-walled carbon nanotube-tungsten carbide composites were prepared by the continuous reduction and carbonization process using multi-walled carbon nanotubes (MWCNTs) and WO3 precursor by molecular level mixing and calcination. The morphology and structure of the samples were characterized by scanning electron microscope and transmission electron microscope. Furthermore, the crystal phase was identified by X-ray diffraction. The electrocatalytic activity of the sample was analyzed by means of methanol oxidation. Tungsten carbide microspheres were catalytic active for methanol oxidation reaction. Nevertheless tungsten trioxide microspheres and multi-walled carbon nanotube-tungsten carbide composites were not catalytic active for methanol oxidation reaction. These results indicate that tungsten carbide micropheres are promising catalyst for methanol oxidation.

Keywords

nanostructures / chemical synthesis / chemical techniques / WO3 / WC-MWCNT composites

Cite this article

Download citation ▾
Hongzhi Lu, Taining Yan. Electrocatalytic activity of tungsten trioxide microspheres, tungsten carbide microspheres and multi-walled carbon nanotube-tungsten carbide composites. Journal of Wuhan University of Technology Materials Science Edition, 2009, 24(2): 229-234 DOI:10.1007/s11595-009-2229-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang H., Wang S., Pan M., . Performance of Direct Methanol Fuel Cells Prepared by Hot-pressed MEA and Catalyst-coated Membrane (CCM)[J]. Electrochim Acta., 2007, 52: 3714-3718.

[2]

Park K.-W., Sung Y.-E., Toney M. F. Structural Effect of PtRu-WO3 alloy Nanostructures on Methanol Electrooxidation[J]. Electrochem Commun., 2006, 8: 359-363.

[3]

Rajeswari J., Viswanathan B., Varadarajan T. K. Tungsten Trioxide Nanorods as Supports for Platinum in Methanol Oxidation[J]. Materials Chemistry and Physics, 2007, 106: 168-174.

[4]

Zheng H., Ma C., Wang W., . Nanorod Tungsten Carbide Thin Film and Its Electrocatalytic Activity for Nitromethane Electroreduction[J]. Electrochem Commun., 2006, 8: 977-981.

[5]

Zhu L.-n., Li G.-l., Wang H.-d., . Microstructures and Nano Mechanical Properties of the Metal Tungsten Film[J]. Current Applied Physics, 2009, 9: 510-514.

[6]

Li G., Ma C., Zheng Y., . Preparation and Electrocatalytic Activity of Hollow Global Tungsten Carbide with Mesoporosity[J]. Microporous Mesoporous Mater., 2005, 85: 234-240.

[7]

Li G., Ma C., Tang J., . Preparation and Electrocatalytic Property of WC/Carbon Nanotube Composite[J]. Electrochim Acta., 2007, 52: 2018-2023.

[8]

Antolini E. Platinum-based Ternary Catalysts for Low Temperature Fuel Cells: Part II[J]. Electrochemical Propertie,. Applied Catalysis B: Environmental, 2007, 74: 337-350.

[9]

Ma C., Sheng J., Brandon N., . Preparation of Tungsten Carbide-supported Nano Platinum Catalyst and Its Electrocatalytic Activity for Hydrogen Evolution[J]. International Journal of Hydrogen Energy, 2007, 32: 2824-2829.

[10]

Wu Z., Feng W., Feng Y., . Preparation and Characterization of Chitosan-grafted Multiwalled Carbon Nanotubes and Their Electrochemical Properties[J]. Carbon, 2007, 45: 1212-1218.

[11]

Rosenbaum M., Zhao F., Quaas M., . Evaluation of Catalytic Properties of Tungsten Carbide for the Anode of Microbial Fuel Cells[J]. Applied Catalysis B: Environmental, 2007, 74: 261-269.

[12]

Ganesan R., Lee J. S. An Electrocatalyst for Methanol Oxidation Based on Tungsten Trioxide Microspheres and Platinum[J]. Journal of Power Sources, 2006, 157: 217-221.

[13]

Zhao J., Holland T., Unuvar C., . Munir Sparking Plasma Sintering of Nanometric Tungsten Carbide[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27: 130-139.

[14]

Regina A., Fontananova E., Drioli E., . Preparation and Characterization of Sulfonated PEEK-WC Membranes for Fuel Cell Applications: A Comparison between Polymeric and Composite Membranes[J]. Journal of Power Sources, 2006, 160: 139-147.

[15]

Lu G., Cooper J. S., McGinn P. J. SECM Characterization of Pt-Ru-WC and Pt-Ru-Co Ternary Thin Film Combinatorial Libraries as Anode Electrocatalysts for PEMFC[J]. Journal of Power Sources, 2006, 161: 106-114.

[16]

Lee K., Ishihara A., Mitsushima S., . Stability and Electrocatalytic Activity for Oxygen Reduction in WC+Ta Catalyst[J]. Electrochimica Acta., 2004, 49: 3 479-3 485.

[17]

Zellner M. B., Chen J. G. Surface Science and Electrochemical Studies of WC and W2C PVD Films as Potential Electrocatalysts[J]. Catalysis Today, 2005, 99: 299-307.

[18]

Blackman C. S., Correig X., Katko V., . Templated Growth of Tungsten Oxide Micro/Nanostructures Using Aerosol Assisted Chemical Vapour Deposition[J]. Materials Letters, 2008, 62(30): 4582-4584.

[19]

Raghuveer V., Viswanathan B. Synthesis, Characterization and Electrochemical Studies of Ti-incorporated Tungsten Trioxides as Platinum Support for Methanol Oxidation[J]. Journal of Power Sources, 2005, 144: 1-10.

[20]

Shi X., Yang H., Sun P., . Synthesis of Multi-walled Carbon Nanotube-tungsten Carbide Composites by the Reduction and Carbonization Process[J]. Carbon, 2007, 45: 1735-1742.

[21]

Nikolov I., Vitanov T., Nikolova V. The Effect of the Method of Preparation on the Catalytic Activity of Tungsten Carbide for Hydrogen Evolution[J]. Journal of Power Sources, 1980, 5: 197-206.

[22]

Keller N., Pietruszka B., Keller V. A New one-dimensional Tungsten Carbide Nanostructured Material[J]. Materials Letters, 2006, 60: 1774-1777.

[23]

Tsirlina G. A., Petrii O. A. Role of Carbon Deficiency and Anodic Activation in the Electrochemistry of Carbide Materials[J]. Electrochimica Acta., 1987, 32: 637-647.

[24]

Bock C., MacDougall B. The Electrochemical Oxidation of Organics Using Tungsten Oxide Based Electrodes[J]. Electrochimica Acta., 2002, 47: 3361-3337.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/