2025-04-09 2009, Volume 16 Issue 2

  • Select all
  • Hui-jin Tao , Jian Yin

    Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is ΔGBCC-HCPGFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.

  • Rui-ming Yin , Jing-lian Fan , Xun Liu

    Fe/Si3N4 composite powder was synthesized by the heterogeneous precipitation-thermal reduction process, and then pressed into flakes under a pressure of 10 MPa. Flakes were sintered by pressureless and hot-pressing at 1 600 °C under 0.1 MPa N2. The chemical composition, phases and microstructure of composite powder and sintered flakes were investigated by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the structure of composite powders is Si3N4 coated by nano Fe. The crystal phases of sintered flakes by pressureless are Fe(Si) compound, SiC and Si3N4. The crystal phases of the sintered samples by hot-pressing are Fe, Fe(Si) compound and Si3N4. It is found that crystal phases flakes obtained by pressureless and hot-pressing are very different.

  • Hai-jiao Yu , Xin-gui Zhou , Hong-lei Wang , Shuang Zhao , Jian-gao Yang , Ze-lan Huang

    Two-dimensional plain-weave silicon carbide fiber fabric reinforced silicon carbide (2D-SiC/SiC) composites were molded by stacking method and densified through precursor infiltration and pyrolysis (PIP) process. SiC coating was deposited as the fiber/matrix interphase layer by chemical vapor deposition (CVD) technique. Fiber/matrix debonding and relatively long fiber pullouts were observed on the fracture surfaces. Additionally, the flexural strength and elastic modulus of the composites with and without fiber/matrix interphase layer were investigated using three-point bending test and single-edge notched beam test. The results show that the fiber fraction and the porosity of 2D-SiC/SiC composites with and without coating are 27.2% (volume fraction) and 11.1%, and 40.7% (volume fraction) and 7.5%, respectively. And the flexural strength and elastic modulus of 2D-SiC/SiC composites with and without coating are 363.3 MPa and 127.8 GPa, and 180.2 MPa and 97.2 GPa, respectively. With a proper thickness, the coating can effectively adjust the fiber/matrix interface, thus causing a dramatic increase in the mechanical properties of the composites.

  • Yun-ren Qiu , Chang Miao , Hong-qi Ye

    Polysulfone (PS) hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions. The effects of trans-membrane pressure, electrolyte concentration, ion valence and pH value of electrolyte solution on the streaming potential (SP) of the membrane were investigated. The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion, and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease, compared with those of the clean membrane. The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8% EDTA at pH=10.

  • Rui-lin Man , Zhong-hui Wang , Ke-wen Tang

    The chiral separation of phenylsuccinic acid (PSA) was studied by reversed phase high-performance liquid chromatography (RP-HPLC) with cyclodextrins (CDs) as chiral mobile phase additives. The effects of types of CDs, concentration of hydroxypropyl-β-cyclodextrin (HP-β-CD), percentage of organic modifier, pH value and column temperature on enantioselective separation were investigated. The quantification property of the developed RP-HPLC method was examined. The chiral recognition mechanism of PSA was also discussed. The results show that a baseline separation of PSA enantiomers is achieved on a Lichrospher C18 column (4.6 mm (inner diameter)×250 mm, 5 μm) with HP-β-CD as chiral mobile phase additive. The capacity factors of R-PSA and S-PSA are 3.94 and 4.80, respectively. The separation factor and resolution are respectively 1.22 and 8.03. The mobile phase is a mixture of acetonitrile and deionized water (20:80, volume ratio) containing 10 mmol/L HP-β-CD and 0.05% trifluoroacetic acid (pH 2.5, adjusted with triethylamine) with a flow rate of 1.0 mL/min. The ultraviolet (UV) detector is set at 254 nm. The likely roles are inclusion interaction, induction and hydrogen bonding between HP-β-CD and PSA enantiomers.

  • Xin-guo Yang , Huan Yuan , Qiu-li Zhao , Qing Yang , Xian-hong Chen

    An intermediate compound 2, 4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was prepared by stepwise nucleophilic substitution on triazine ring by lauryl amine and subsequently 1-(2-aminoethyl)-piperazine. Then imidization of perylene-3, 4, 9, 10-tetracarboxylic acid dianhydride with 2,4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was carried out to afford a novel perylene derivative bearing two melamine blocks (S2) and 1, 6, 7, 12-tetra(4-tert-butyl phenoxy)-perylene-3, 4, 9, 10-tetracarboxylic acid bisimide (S1). The hydrogen-bonding interactions between S1 and S2 were investigated by 1H NMR spectrum, UV/Vis spectrum and fluorescence spectrum. The influences on the morphologies of S1·S2 aggregates were investigated. The results show that well-defined nanofibers with a diameter of about 100 nm can be obtained by self-assembly between S1 and S2 only in CH2Cl2 solution. Based on these results, guidelines for the molecular design and self-assembly of supramolecular polymer materials are presented.

  • Shu-zhen Tan , Shu Long , Jiao-yun Xia , Zhong Cao , Ling Zhang , Fu-chun Gong

    A novel technique of immobilizing indicator dyes by electrostatic adsorption and covalent bonding to fabricate optical sensors was developed. 3-Amino-9-ethylcarbazole (AEC) was attached to the outmost surface of quartz glass slide via aminosilanizing the slide, crosslinking chitosan, adsorbing Au nanoparticle, self-assembling HS(CH2)11OH, and coupling AEC. Thus, an AEC-immobilized optical sensor was obtained. The sensor exhibits a wide linear response range from 7.0×10−7 to 1.0×10−4 mol/L and a correlation coefficient of 0.995 9 for the detection of 2-nitrophenol. The detection limit and response time of the sensor are 1.0×10−7 mol/L and less than 10 s, respectively. The fluorescence intensity of the used sensor can be restored to the blank value by simply rinsing with blank buffer. A very effective matrix for immobilizing indicator dye is provided by the proposed technique, which is adaptable to other indicator dyes with amino groups besides AEC.

  • Jian Kang , Guan-zhou Qiu , Jian Gao , Hai-hua Wang , Xue-ling Wu , Jian-nan Ding

    Mixed microorganisms with elevated activity of chalcocite-leaching were screened by mutation methods. The original microorganisms collected from acid mine drainage of different sites were mixed and then treated with mutagens NO2, diethyl sulfate (DES), UV and their combinations, respectively. Five groups of mixed microorganisms with much stronger ore-leaching ability were obtained by screening on the leaching media. Among them, group E of mixed microorganisms (treated with 1% DES for 60 min) with the best performance on chalcocite-leaching, increases the content of Cu2+ by 101.4% in 20 d of leaching compared with the control culture. In addition, group E is more tolerant to Cu2+ in media than the control without mutation treatment. Analysis for the diversity of microbial clones indicates that half of operational taxonomic units (OTUs) in group E are Acidithiobacillus ferrooxidans. These observations suggest that group E might have potentials for industrial application.

  • Min-xi Wan , Yu Yang , Guan-zhou Qiu , Ai-ling Xu , Lin Qian , Zhi-ying Huang , Jin-lan Xia

    To reveal the impact of mining on bacterial ecology around mining area, bacterial community and geochemical characteristics about Dabaoshan Mine (Guangdong Province, China) were studied. By amplified ribosomal DNA restriction analysis and phylogenetic analysis, it is found that mining pollution greatly impacts the bacterial ecology and makes the habitat type of polluted environments close to acid mine drainage (AMD) ecology. The polluted environment is acidified so greatly that neutrophil and alkaliphilic microbes are massively dead and decomposed. It provided organic matters that can make Acidiphilium sp. rapidly grow and become the most bacterial species in this niche. Furthermore, Acidithiobacillus ferrooxidans and Leptospirillum sp. are also present in this niche. The amount of Leptospirillum sp. is far more than that of Acidithiobacillus ferrooxidans, which indicates that the concentration of toxic ions is very high. The conclusions of biogeochemical analysis and microbiological monitor are identical. Moreover, because the growth of Acidithiobacillus ferrooxidans and Leptospirillum sp. depends on ferrous iron or inorganic redox sulfur compounds which can be supplied by continual AMD, their presence indicates that AMD still flows into the site. And the area is closer to the outfalls of AMD, their biomasses would be more. So the distinction of their biomasses among different areas can help us to find the effluent route of AMD.

  • Hai-xin Ai , Ji-ti Zhou , Hong Lü

    A novel strain of Micrococcus sp. DUT_AHX, which was isolated from the sludge of a nitrobenzene (NB)-manufacturing plant and could utilize NB as the sole carbon source, was identified on the basis of physiological and biochemical tests and 16S ribosomal DNA (rDNA) sequence analysis. It can grow at the temperature up to 40 °C or in the presence of NaCl concentration up to 12 g/L in Luria-Bertani (LB) medium. The optimal degradation conditions are as follows: temperature 37 °C, pH 7.0, and shaking speed 150 r/min. The strain involves a partial reductive pathway due to the release of ammonia and can also utilize 2-aminophenol as the sole carbon source. Furthermore, the enzyme activity tests show that crude extracts of NB-grown strain DUT_AHX mainly contain 2-aminophenol 1, 6-dioxygenase activity. The exploitation of salt-tolerant bacteria will be a remarkable improvement in NB bioremediation and wastewater treatment at high salinity and high temperature.

  • Yan-qing Lai , Shui-ping Zhong , Liang-xing Jiang , Xiao-jun Lü , Pei-ru Chen , Jie Li , Ye-xiang Liu

    A new anodic material of ternary Pb-0.8%Ag-(0–5.0%)Bi alloy for zinc electrowinning was obtained by doping Bi. The anodic oxygen evolution potential, corrosion rate, surface products after polarization, and microstructures before and after polarization were studied and compared with those of Pb-0.8%Ag anode used in industry. The results show the anodic overpotential decreases with the increase of Bi content in the alloys. When the content of Bi is 1.0% (mass fraction), the anodic overpotential is 40–50 mV lower than that of Pb-0.8%Ag anode. While the corrosion rate decreases and then increases with the increase of Bi content. The Pb-0.8%Ag-0.1%Bi anode has the lowest corrosion rate (0.090 6 mg/(h·cm2). Doping Bi influences the structure of the anodic layer, but does not change the phase. The Pb-0.8%Ag-1.0%Bi anode layer is of a more fine-grained structure compared with Pb-0.8%Ag anode.

  • Ya-jie Zheng , Yong Wang , Fa-xin Xiao , Yuan Luo

    The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu to As was 2:1 and pH value of the neutralized wastewater was adjusted to 8.0 by sodium hydroxide. The arsenious acid solution and red residue were produced after copper arsenite mixed with water according to the ratio of liquid to solid of 4:1 and copper arsenite was reduced by SO2 at 60 °C for 1 h. The white powder was gained after the arsenious acid solution was evaporated and cooled. Copper sulfate solution was obtained after the red residue was leached by H2SO4 solution under the action of air. The results show that red residue is Cu3(SO3)2·2H2O and the white powder is As2O3. The leaching rate of Cu reaches 99.00% when the leaching time is 1.5 h, molar ratio of H2SO4 to Cu is 1.70, H2SO4 concentration is 24% and the leaching temperature is 80 °C. The direct recovery rate of copper sulfate is 79.11% and the content of CuSO4·5H2O is up to 98.33% in the product after evaporating and cooling the copper sulfate solution.

  • Zhi-an Zhang , Yan-qing Lai , Jie Li , Ye-xiang Liu

    The activated carbon wound supercapacitors with TEABF4/propylene carbonate (PC) and TEABF4/acetonitrile (AN) electrolytes were prepared. The effects of the electrolyte and temperature on the capacitance behavior were investigated by cyclic voltammetry (CV) and constant current charge-discharge. Compared with the PC-based supercapacitor, the AN-based supercapacitor has higher capacitance and lower equivalent serial resistance (RES) at discharge currents ranging from 5 to 1 000 mA and 25 °C. Moreover, temperature effects are more prominent for PC-based supercapacitor than for AN-based supercapacitor. When the measurement temperature ranges from 60 °C to −40 °C the capacitance changes from 5.1 to 2.5 F and RES changes from 135 to 876 mΩ for the PC-based supercapacior, while the AN-based supercapacitor shows less change in capacitance and RES. Thus AN-based supercapacitor exhibits excellent power characteristics and temperature property.

  • Wei-hua Xu , Yun-guo Liu , Guang-ming Zeng , Ming Zhou , Ting Fan , Xin Wang , Wen-bin Xia

    Cr(VI)-amended soil was inoculated with Cr(VI)-reducing strain, Bacillus sp. XW-4 and incubated at 28 °C in an incubator. Cr(VI) reduction, available Cr and Cr fraction in soils were studied. The results show that addition of Bacillus sp. XW-4 can promote Cr(VI) reduction, but inoculation of this strain has a negative effect on the decrease of available Cr content in soil. In controls (without this strain) amended with 100 and 200 mg/kg of Cr(VI), Cr(VI) contents decrease to about 41 and 92 mg/kg respectively after incubation of 4 d, while in soil inoculated with XW-4, Cr(VI) contents decrease to about 18 and 60 mg/kg, respectively. The content of available Cr in soils with inoculation of XW-4 is higher than that in controls. Chromium is partitioned into water soluble Cr, exchangeable Cr, precipitated Cr, Cr bound to organics and residual Cr. The highest content of Cr is observed in residual form and water soluble Cr is not detected for all treatments after 42 d, but the soils inoculated with Bacillus sp. XW-4 contain higher content of exchangeable Cr and lower content of precipitated Cr than the soil without the inoculum. Inoculation of Bacillus sp. XW-4 can increase chromium activity in soils.

  • Jin-fu Chen , Yan-sheng Lu , Wei Zhang , Xiao-dong Xie

    A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities. A fault injection model was defined, and the faults were injected into the tested component based on the fault injection model to trigger security exceptions. The testing process could be recorded by the monitoring mechanism of the strategy, and the monitoring information was written into the security log. The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log. Lastly, some experiments were done in an integration testing platform to verify the applicability of the strategy. The experimental results show that the strategy is effective and operable. The detecting rate is more than 90% for vulnerability components.

  • Chang-geng Tan , Ke Xu , Jian-xin Wang , Song-qiao Chen

    In the application of periodic data-gathering in sensor networks, sensor nodes located near the sink have to forward the data received from all other nodes to the sink, which depletes their energy very quickly. A moving scheme for the sink based on local residual energy was proposed. In the scheme, the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors. The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks. The simulation results show that the scheme can prolong the network lifetime by 26%–65% compared with the earlier schemes where the sink is static or moves randomly.

  • Chun-hua Hu , Xiao-hong Chen , Xi-ming Liang

    Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration, an algorithm QCDSS (QoS constraints of dynamic Web services selection) to resolve dynamic Web services selection with QoS global optimal path, was proposed. The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints. The operations of the cross and mutation in genetic algorithm were brought into PSOA (particle swarm optimization algorithm), forming an improved algorithm (IPSOA) to solve the QoS global optimal problem. Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.

  • Shao-rong Feng , Wen-jun Xiao

    To find out all dependency relationships in which metaphors probably exist between syntax constituents in a given sentence, a dependency tree matching algorithm oriented to Chinese metaphor processing is proposed based on a research of unordered tree inclusion matching. In this algorithm, the pattern library is composed of formalization dependency syntax trees that are derived from large-scale metaphor sentences. These kinds of metaphor sentences are saved in the pattern library in advance. The main process of this algorithm is up-down searching and bottom-up backtracking revising. The algorithm discovers potential metaphoric structures in Chinese sentences from metaphoric dependency pattern library. Finally, the feasibility and efficiency of the new matching algorithm are further testified by the results of a series of experiments on dependency pattern library. Hence, accurate dependency relationships can be achieved through this algorithm.

  • Xiong Xiong , Jian-hua Ge , Jing Li , Yun-shuai Tang

    In order to obtain coding gain along with diversity gain, rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol. Different from the same two symbols transmitted in conventional repetition-coded scheme, two different symbols were transmitted separately in two successive timeslots in the proposed rotation-coded cooperative diversity. In this way, constellation spread in the available two-dimensional signal space rather than on a single-dimensional line in repetition-coded scheme, which was supposed to be responsible for the additional coding gain. Under the proposed cooperative transmission model, upper bounds for the symbol-error-rate (SER) of cooperative diversity based on repetition code and rotation code were derived respectively. Both analytical and simulated results show that cooperative diversity based on rotation code can obtain an improved coding gain (by about 2 dB) than repetition-coded scheme without the expense of power or bandwidth.

  • Xin-min Wang , Bin Zhao , Qin-li Zhang

    Physical-chemical properties of phosphorous gypsum, proportion and cemented mechanism of slurry with gypsum as aggregate were studied to remove the harms of gypsum pile, combining with difficult problems of excessive mined-out gobs, enormous ore body under roadway and low recovery ratio of Yongshaba Mine, Kaiyang Phosphor Mine Group, Guizhou Province, China. An appropriate backfill system and craftwork were designed, using shattering milling method to crush gypsum, double-axles mixing and strong activation mixing way to mix slurry, cemented slurry and mullock backfill alternately process. The results show that gypsum is fit for backfilling afterwards by adding fly ash, though it is not an ideal aggregate for fine granule and coagulate retardation. The suggested dosage (the mass ratio of cement to fly ash to gypsum) is 1:1:6–1:1:8 with mass fraction of solid materials 60%–63%. Slurry is transported in suspend state with non-plastic strength, and then in concretion state after backfilling. The application to mine shows the technology is feasible, and gypsum utilization ratio is up to 100%. Transportation and backfill effect is very good for paste-like slurry and drenching cemented slurry into mullock, and the compressive strength and recovery ratio are 2.0 MPa and 82.6%, respectively, with the maximum subsidence of surface only 1.307 mm. Furthermore, the investment of system is about 7×106 yuan (RMB), only 1/10 of that of traditional paste backfill system.

  • Xiao-li Yang , Fu Huang

    The soil masses of slopes were assumed to follow a nonlinear failure criterion and a nonassociated flow rule. The stability factors of slopes were calculated using vertical slice method based on limit analysis. The potential sliding mass was divided into a series of vertical slices as well as the traditional slice technique. Equating the external work rate to the internal energy dissipation, the optimum solutions to stability factors were determined by the nonlinear programming algorithm. From the numerical results, it is found that the present solutions agree well with previous results when the nonlinear criterion reduces to the linear criterion, and the nonassociated flow rule reduces to the associated flow rule. The stability factors decrease by 39.7% with nonlinear parameter varying from 1.0 to 3.0. Dilation and nonlinearity have significant effects on the slope stability factors.

  • Zhong Zhou , Hong-gui Wang , He-lin Fu , Bao-chen Liu

    In order to improve the understanding of the fundamental mechanism of rainfall infiltration induced landslides in accumulation slope and to clarify some important characteristics of slope performance, artificial rainfall simulation tests and field synthetic monitoring were carried out on a typical accumulation slope of Shangrui Freeway in Guizhou Province, China. The monitoring results show that the most accumulation landslides caused by rainfall infiltration are shallow relaxation failure, whose deformation zone lies within the top 0–4 m soil layer. The deformation of slope gradually reduces from the surface, where the greatest deformation lies in, to the deep part of slope. The average percentage of infiltration during the first 2 h is 86%, and then it reduces gradually with time because of the increase of the surface runoff. The average percentage of infiltration drop to a relatively stable value (50%) after 6 h. Rainfall infiltration causes obvious increase of pore-water pressure, which may result in a reduction of shear strength due to a decrease in effective stress and wetting-induced softening. The double-effect of rainfall infiltration is the main reason of rainfall infiltration induced landslides in accumulation slope.

  • Hao Wu , Zhi-kun Guo , Qin Fang , Ya-dong Zhang , Jin-chun Liu

    In order to study the mechanism of the zonal disintegration phenomenon (ZDP), both experimental and theoretical investigations were carried out. Firstly, based on the similarity law, gypsum was chosen as equivalent material to simulate the deep rock mass, the excavation of deep tunnel was modeled by drilling a hole in the gypsum models, two circular cracked zones were measured in the model, and ZDP in the enclosing rock mass around deep tunnel was simulated in 3D gypsum model tests. Secondly, based on the elasto-plastic analysis of the stressed-strained state of the surrounding rock mass with the improved Hoek-Brown strength criterion and the bilinear constitutive model, the maximum stress zone occurred in vicinity of the elastic-plastic interface due to the excavation of the deep tunnel, rock material in maximum stress zone is in the approximate uniaxial loading state owing to the larger tangential force and smaller radial force, the mechanism of ZDP was explained, which lay in the creep instability failure of rock mass due to the development of plastic zone and transfer of the maximum stress zone within the rock mass. Thirdly, the analytical critical depth for the occurrence of ZDP was obtained, which depended on the mechanical indices and stress concentration coefficient of rock mass.

  • Jian-lan Zheng , Xue-fang Wang

    The effects of quality and content of fly ash on the early-age cracking behavior of high-flowing concrete (HFC) were investigated. The early-age cracking behavior of the HFC was analyzed by combining the tests of evaporation capacity and electrical resistivity of the HFC. In these tests, a modified flat-type specimen was adopted. The results show that the HFC will have a lower evaporation capacity when it is mixed with fine fly ash, while it will have a higher evaporation capacity when grade III fly ash is used as mineral admixture. And the electrical resistivity rate of HFC reduces with the increase of the content of fly ash. A nonlinear relationship exists between the cracking time of HFC and the minimum electrical resistivity. The early-age cracking behavior of HFC with fly ash can be enhanced by appropriately increasing the fine particle content and MgO, K2O, and SO3 contents of fly ash. The optimal content of fly ash, which makes a satisfied early-age cracking behavior of HFC, is obtained. And when the content of fly ash exceeds a critical value, the early-age cracking behavior of HFC will rapidly decrease.

  • Chun-ping Zhang , Wei Liu , Feng Wu , Fang-zhong Guo , Xiao-qing Zhang

    In thermoacoustic system, the characteristic of complex compliance of a regenerator has a great influence on energy stored and dissipation of the whole engine. In order to investigate the performance of regenerators with different matrix geometries and materials coupled with different acoustic systems, an experimental measurement and analysis method was presented. By measuring the resonant frequency, the complex compliance and quality factor of five kinds of matrix were experimentally analyzed respectively in the system of loudspeaker-driven thermoacoustic resonator (TAR) with different lengths. The experimental results show that the real part of complex compliance of the regenerator with pin-array has a maximum value among the measured matrixes and its quality factor is the largest (28.222) with the least dissipation factor of 0.035 4. So the pin-array matrix is testified to behave more excellently on the energy conversion than other matrixes. Compared with other factors the complex compliance of a regenerator contributes more to the performance of a thermoacoustic system.

  • Fang Zhao , Zhen-qian Chen , Ming-heng Shi

    A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established. In this model, the blood vessels were considered as tree-like branched fractal network, and the effective flow rate and effective thermal conductivity of blood were obtained by fractal method. The temperature distribution and ice crystal growth process in biological tissue embedded with two cryoprobes during freezing-thawing process were numerically simulated. The results show that the growth velocity of ice crystal in freezing process from 200 to 400 s is more rapid than that from 400 to 600 s. Thawing process of frozen tissue occurs in the regions around cryoprobes tips and tissue boundary simultaneously, and the phase interfaces are close to each other until ice crystal melts completely. The distance of two cryoprobes has a more profound effect on the temperature distribution in freezing process at 400 s than at 800 s.

  • Xia-miao Li , Ming-hua Zeng , Bai-bai Fu , Xiao-li Zhu

    Delay, as an inevitable real-world phenomenon, is usually ignored in transport network design. A model of urban hybrid transport system with stochastic delay was created on the basis of the idealized public transport system design. After formulating the total trip time cost composed of accessing time in the sub-region of the city, waiting time at the public transport station, and in-vehicle time in the public transit network, the analytical properties of the total trip time cost function were investigated. The results show that in the urban hybrid transport network design, the total trip time cost reaches its approximate minimum in a δ-neighbourhood of buffer time of 1.5 min, and that through modelling optimal delay in hybrid transport system, the maximal synchronization can be achieved and operational efficiency and passenger satisfaction can be improved. The proposed modelling and analytical investigations are attempts to contribute to more realistic modelling of future idealized public transport system that involves more practical constraints.