Slope stability analysis considering joined influences of nonlinearity and dilation
Xiao-li Yang , Fu Huang
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (2) : 292 -296.
Slope stability analysis considering joined influences of nonlinearity and dilation
The soil masses of slopes were assumed to follow a nonlinear failure criterion and a nonassociated flow rule. The stability factors of slopes were calculated using vertical slice method based on limit analysis. The potential sliding mass was divided into a series of vertical slices as well as the traditional slice technique. Equating the external work rate to the internal energy dissipation, the optimum solutions to stability factors were determined by the nonlinear programming algorithm. From the numerical results, it is found that the present solutions agree well with previous results when the nonlinear criterion reduces to the linear criterion, and the nonassociated flow rule reduces to the associated flow rule. The stability factors decrease by 39.7% with nonlinear parameter varying from 1.0 to 3.0. Dilation and nonlinearity have significant effects on the slope stability factors.
nonlinear failure criterion / nonassociated flow rule / soil slope
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
/
| 〈 |
|
〉 |