Numerical study on freezing-thawing phase change heat transfer in biological tissue embedded with two cryoprobes

Fang Zhao , Zhen-qian Chen , Ming-heng Shi

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (2) : 326 -331.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (2) : 326 -331. DOI: 10.1007/s11771-009-0055-x
Article

Numerical study on freezing-thawing phase change heat transfer in biological tissue embedded with two cryoprobes

Author information +
History +
PDF

Abstract

A two-dimensional model for freezing and thawing phase change heat transfer in biological tissue embedded with two cryoprobes was established. In this model, the blood vessels were considered as tree-like branched fractal network, and the effective flow rate and effective thermal conductivity of blood were obtained by fractal method. The temperature distribution and ice crystal growth process in biological tissue embedded with two cryoprobes during freezing-thawing process were numerically simulated. The results show that the growth velocity of ice crystal in freezing process from 200 to 400 s is more rapid than that from 400 to 600 s. Thawing process of frozen tissue occurs in the regions around cryoprobes tips and tissue boundary simultaneously, and the phase interfaces are close to each other until ice crystal melts completely. The distance of two cryoprobes has a more profound effect on the temperature distribution in freezing process at 400 s than at 800 s.

Keywords

heat transfer / fracture / phase change / freezing / thawing

Cite this article

Download citation ▾
Fang Zhao, Zhen-qian Chen, Ming-heng Shi. Numerical study on freezing-thawing phase change heat transfer in biological tissue embedded with two cryoprobes. Journal of Central South University, 2009, 16(2): 326-331 DOI:10.1007/s11771-009-0055-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangA. L., XuL. X., SandisonG. A., ZhangJ. Y.. A microscale model for prediction of breast cancer cell damage during cryosurgery [J]. Cryobiology, 2003, 47(2): 143-154

[2]

GageA. A., BaustJ.. REVIEW-mechanisms of tissue injury in cryosurgery [J]. Cryobiology, 1998, 37(3): 171-186

[3]

DengZ.-s., LiuJ.. Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties [J]. Cryobiology, 2005, 50(2): 183-192

[4]

HoffmannN. E., BischofJ. C.. Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part 1—Thermal response [J]. Journal of Biomechanical Engineering, 2001, 123(4): 301-309

[5]

ShiJ., ChenZ.-q., ShiM.-h., ChenY.. Numerical simulation on freezing and thawing phase change heat transfer process in tumor [J]. Journal of Engineering Thermophysics, 2008, 29(6): 1017-1020

[6]

MagalovZ., ShitzerA., DeganiD.. Isothermal volume contours generated in a freezing gel by embedded cryo-needles with applications to cryo-surgery [J]. Cryobiology, 2007, 55(2): 127-137

[7]

RewcastleJ. C., SandisonG. A., MuldrewK., SalikenJ. C., DonnellyB. J.. A model for the time dependent three-dimensional thermal distribution within iceballs surrounding multiple cryoprobes [J]. Med Phys, 2001, 28(6): 1125-1137

[8]

PennesH. H.. Analysis of tissue and arterial temperatures in the resting human forearm [J]. J Appl Physiol, 1948, 1(2): 93-122

[9]

DengZ.-s., LiuJ., WangH.-wu.. Disclosure of the significant thermal effects of large blood vessels during cryosurgery through infrared temperature mapping [J]. International Journal of Thermal Sciences, 2008, 47(5): 530-545

[10]

CongW.-ming.A color atlas of pathology of hepatobiliary tumors [M], 1998, Shanghai, Shanghai Science and Technology Press: 71

[11]

ZamirM.. On fractal properties of arterial trees [J]. Journal of Theoretical Biology, 1999, 197(4): 517-526

[12]

XuP., YuB.-m., YunM.-j., ZouM.-qing.. Heat conduction in fractal tree-like branched networks [J]. International Journal of Heat and Mass Transfer, 2006, 49(19/20): 3746-3751

[13]

MandelbrotB. B.The fractal geometry of nature [M], 1982, New York, W.H. Freeman and Company: 37

[14]

GuoK.-l., KongX.-q., ChenS.-nian.Computational heat transfer [M], 1988, Hefei, University of Science and Technology of China Press: 68

[15]

ChuaK. J., ChouS. K., HoJ. C.. An analytical study on the thermal effects of cryosurgery on selective cell destruction [J]. Journal of Biomechanics, 2007, 40(1): 100-116

[16]

LiuJ., WangC.-cheng.Biologic heat transfer [M], 1997, Beijing, Science Press: 418-420

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/