Effect of doping Bi on oxygen evolution potential and corrosion behavior of Pb-based anode in zinc electrowinning

Yan-qing Lai , Shui-ping Zhong , Liang-xing Jiang , Xiao-jun Lü , Pei-ru Chen , Jie Li , Ye-xiang Liu

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (2) : 236 -241.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (2) : 236 -241. DOI: 10.1007/s11771-009-0040-4
Article

Effect of doping Bi on oxygen evolution potential and corrosion behavior of Pb-based anode in zinc electrowinning

Author information +
History +
PDF

Abstract

A new anodic material of ternary Pb-0.8%Ag-(0–5.0%)Bi alloy for zinc electrowinning was obtained by doping Bi. The anodic oxygen evolution potential, corrosion rate, surface products after polarization, and microstructures before and after polarization were studied and compared with those of Pb-0.8%Ag anode used in industry. The results show the anodic overpotential decreases with the increase of Bi content in the alloys. When the content of Bi is 1.0% (mass fraction), the anodic overpotential is 40–50 mV lower than that of Pb-0.8%Ag anode. While the corrosion rate decreases and then increases with the increase of Bi content. The Pb-0.8%Ag-0.1%Bi anode has the lowest corrosion rate (0.090 6 mg/(h·cm2). Doping Bi influences the structure of the anodic layer, but does not change the phase. The Pb-0.8%Ag-1.0%Bi anode layer is of a more fine-grained structure compared with Pb-0.8%Ag anode.

Keywords

Pb-Ag anode / doping Bi / zinc electrowinning / oxygen evolution potential / corrosion rate

Cite this article

Download citation ▾
Yan-qing Lai, Shui-ping Zhong, Liang-xing Jiang, Xiao-jun Lü, Pei-ru Chen, Jie Li, Ye-xiang Liu. Effect of doping Bi on oxygen evolution potential and corrosion behavior of Pb-based anode in zinc electrowinning. Journal of Central South University, 2009, 16(2): 236-241 DOI:10.1007/s11771-009-0040-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangY.-j., XieG., YangD.-j., LiY.-j., XiaoT.-man.. Analysis on decreasing of direct current power consumption in zinc electrowinning [J]. Hydrometallurgy of China, 2005, 24(4): 208-211

[2]

PfngG.-fang.. Analyses and optimization exploration of D.C. consumption in zinc electrowinning [J]. Energy Saving of Non-ferrous Metallurgy, 2003, 20(2): 17-20

[3]

IvanovI., StefanovY., NonchevaZ., PetrovaM., DobrevT., MirkovaL., VermeerschR., DemaerelJ. P.. Insoluble anodes used in hydrometallurgy. Part II. Anodic behaviour of Pb and Pb-alloy anodes [J]. Hydrometallurgy, 2000, 57(2): 125-139

[4]

IvanovI., StefanovY., NonchevaZ., PetrovaM., DobrevT., MirkovaL., VermeerschR., DemaerelJ. P.. Insoluble anodes used in hydrometallurgy. Part I. Corrosion resistance of Pb and Pb alloy anodes [J]. Hydrometallurgy, 2000, 57(2): 109-124

[5]

StefanovY., DobrevT.. Potentiodynamic and electronmicroscopy investigations of Pb-cobalt alloy coated Pb composite anodes for zinc electrowinning [J]. Transactions of the Institute of Metal Finishing, 2005, 83(6): 296-299

[6]

LiB.-s., LinA., GanF.-xing.. Preparation and electrocatalytic properties of Ti/IrO2-Ta2O5 anodes for oxygen evolution [J]. Trans Nonferrous Met Soc China, 2006, 16(5): 1193-1199

[7]

HuJ.-m., ZhangJ.-q., CaoC.-nan.. Oxygen evolution reaction on IrO2-based DSA type electrodes: Kinetics analysis of Tafel lines and EIS [J]. International Journal of Hydrogen Energy, 2004, 29(8): 791-797

[8]

StefanovY., DobrevT.. Developing and studying the properties of Pb-TiO2 alloy coated Pb composite anodes for zinc electrowinning [J]. Transactions of the Institute of Metal Finishing, 2005, 83(6): 291-295

[9]

ZhongS.-p., LaiY.-q., JiangL.-xing.. Research development of new anode and techniques for zinc electrowinning [J]. Materials Review, 2008, 22(2): 86-89

[10]

WesselmarkM., LagergrenC., LinderghG.. Methanol oxidation as anode reaction in zinc electrowinning [J]. Journal of the Electrochemical Society, 2005, 152(11): D201-D207

[11]

JinB.-J., YangX.-wan.. Application of gas diffusion anode for zinc hydrometallurgy [J]. Yunnan Metallurgy, 2007, 36(3): 37-39

[12]

SuY., JinZ.-m., DaiZ.-yuan.. SO2 anodic reaction kinetics in zinc electrowinning [J]. The Chinese Journal of Nonferrous Metals, 2001, 11(3): 495-498

[13]

RiceD. M.. Effects of bismuth on the electrochemical performance of Pb/acid batteries [J]. Journal of Power Sources, 1989, 28(1/2): 69-83

[14]

LiW.-s., ChenH.-y., LongX.-m., WuF.-h., YanJ.-h., ZhangC.-ru.. Oxygen evolution reaction on Pb-bismuth alloys in sulfuric acid solution [J]. Journal of Power Sources, 2006, 158(2): 902-907

[15]

HeQ.-x., TuW.-p., HuJ.-qing.. Synthesis and characterization of bismuth-doped tin dioxide nanometer powders [J]. Journal of Central South University of Technology, 2006, 13(5): 519-524

[16]

HrussanovaA., MirkovaL., DobrevT.. Electrochemical properties of Pb-Sb, Pb-Ca-Sn and Pb-Co3O4 anodes in copper electrowinning [J]. Journal of Applied Electrochemistry, 2002, 32(5): 505-512

[17]

LaitinenT., SundholmG., VilhunenJ. K.. Comments on sample treatment in the X-ray diffraction analysis of the oxidation products of Pb [J]. Journal of Power Sources, 1990, 32(1): 71-80

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/