Novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole via electrostatically assembled gold nanoparticle layer

Shu-zhen Tan , Shu Long , Jiao-yun Xia , Zhong Cao , Ling Zhang , Fu-chun Gong

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (2) : 212 -217.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (2) : 212 -217. DOI: 10.1007/s11771-009-0036-0
Article

Novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole via electrostatically assembled gold nanoparticle layer

Author information +
History +
PDF

Abstract

A novel technique of immobilizing indicator dyes by electrostatic adsorption and covalent bonding to fabricate optical sensors was developed. 3-Amino-9-ethylcarbazole (AEC) was attached to the outmost surface of quartz glass slide via aminosilanizing the slide, crosslinking chitosan, adsorbing Au nanoparticle, self-assembling HS(CH2)11OH, and coupling AEC. Thus, an AEC-immobilized optical sensor was obtained. The sensor exhibits a wide linear response range from 7.0×10−7 to 1.0×10−4 mol/L and a correlation coefficient of 0.995 9 for the detection of 2-nitrophenol. The detection limit and response time of the sensor are 1.0×10−7 mol/L and less than 10 s, respectively. The fluorescence intensity of the used sensor can be restored to the blank value by simply rinsing with blank buffer. A very effective matrix for immobilizing indicator dye is provided by the proposed technique, which is adaptable to other indicator dyes with amino groups besides AEC.

Keywords

optical sensor / chitosan / Au nanoparticle / 3-amino-9-ethylcarbazole / 2-nitrophenol / indicator dye

Cite this article

Download citation ▾
Shu-zhen Tan, Shu Long, Jiao-yun Xia, Zhong Cao, Ling Zhang, Fu-chun Gong. Novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole via electrostatically assembled gold nanoparticle layer. Journal of Central South University, 2009, 16(2): 212-217 DOI:10.1007/s11771-009-0036-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangX. B., GuoC. C., LiZ. Z., ShenG. L., YuR. Q.. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer [J]. Analytical Chemistry, 2002, 74(4): 821-825

[2]

ZengH. H., WangK. M., YuR. Q.. Development of an optode membrane for the determination of 2-nitrophenol based on fluorescence energy transfer [J]. Analytica Chimica Acta, 1994, 298(2): 271-277

[3]

LiuY. M., Pereiro-GarcíaR., Valencia-GonzálezM. J., Diaz-GarciaM. E., Sanz-MedelA.. Evaluation of some immobilized room-temperature phosphorescent metal chelates as sensing materials for oxygen [J]. Analytical Chemistry, 1994, 66(6): 836-840

[4]

IgarashiS., KuwaeK., YotsuyanagiT.. Optical pH sensor of electrostatically immobilized porphyrin on the surface of sulfonated-polystyrene [J]. Analytical Sciences, 1994, 10(5): 821-823

[5]

LuJ. Z., ZhangZ. J.. A reusable optical sensing layer for 2-nitrophenol based on the luminescence quenching of the Eu-thenoyltrifluoroacetone complex [J]. Analytica Chimica Acta, 1996, 318(2): 175-179

[6]

ChristineM., DavidW., FredM., StanleyK.. Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement [J]. Analytical Chemistry, 1986, 58(7): 1427-1430

[7]

HisamotoH., ManabeY., YanaiH., TohmaH., YamadaT., SuzukiK.. Molecular design, characterization, and application of multiinformation dyes for multidimensional optical chemical sensings (2): Preparation of the optical sensing membranes for the simultaneous measurements of pH and water content in organic media [J]. Analytical Chemistry, 1998, 70(7): 1255-1261

[8]

XavierM. P., Garcia-FresnadilloD., Moreno-BondiM. C., OrellanaG.. Oxygen sensing in nonaqueous media using porous glass with covalently bound luminescent Ru(II) complexes [J]. Analytical Chemistry, 1998, 70(24): 5184-5189

[9]

MohrG. J., TirelliN., Spichiger-KellerU. E.. Plasticizer-free optode membranes for dissolved amines based on copolymers from alkyl methacrylates and the fluoro reactand ETHT 4014 [J]. Analytical Chemistry, 1999, 71(8): 1534-1539

[10]

AmbroseT. M., MeyerhoffM. E.. Optical ion sensing with immobilized thin films of photocrosslinked decyl methacrylate [J]. Analytica Chimica Acta, 1999, 378(1/3): 119-126

[11]

NiuC. G., LiZ. Z., ZhangX. B., ShenG. L., YuR. Q.. Covalently immobilized aminonaphthalimide as fluorescent carrier for the preparation of optical sensors [J]. Analytical and Bioanalytical Chemistry, 2002, 372(4): 519-524

[12]

NiuC. G., ZengG. M., ChenL. X., ShenG. L., YuR. Q.. Proton “off-on” behaviour of methylpiperazinyl derivative of naphthalimide: A pH sensor based on fluorescence enhancement [J]. Analyst, 2004, 129(1): 20-24

[13]

NiuC. G., GuanA. L., ZengG. M., LiuY. G., HuangG. H., GaoP. F., GuiX. Q.. A ratiometric fluorescence halide sensor based on covalently immobilization of quinine and benzothioxanthene [J]. Analytica Chimica Acta, 2005, 547(2): 221-228

[14]

TanS. Z., NiuC. G., JiangJ. H., ShenG. L., YuR. Q.. Optochemical sensor for an ornidazole assay using 1-amino-4-allyloxyanthraquinone as a fluorescent indicator [J]. Analytical Sciences, 2005, 21(8): 967-971

[15]

StellacciF., BauerC. A., Meyer-FriedrichsenT., WenseleersW., MarderS. R., PerryJ. W.. Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles [J]. Journal of the American Chemical Society, 2003, 125(2): 328-329

[16]

BrownK. R., FoxA. P., NatanM. J.. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes [J]. Journal of the American Chemical Society, 1996, 118(5): 1154-1157

[17]

GrabarK. C., FreemanR. G., HommerM. B., NatanM. J.. Preparation and characterization of Au colloid monolayers [J]. Analytical Chemistry, 1995, 67(4): 735-743

[18]

YakushijiT., SakaiK., KikuchiA., AoyagiT., SakuraiY., OkanoT.. Effects of cross-linked structure on temperature-responsive hydrophobic interaction of poly(N-isopropylacrylamide) hydrogel-modified surfaces with steroids [J]. Analytical Chemistry, 1999, 71(6): 1125-1130

[19]

ShakhsherZ. M., SeitzW. R.. Optical detection of cationic surfactants based on ion pairing with an environment-sensitive fluorophor [J]. Analytical Chemistry, 1990, 62(17): 1758-1762

[20]

ZhangZ., ZhangY., MaW., RussellR., ShakhsherZ. M., GrantC. L., SeitzW. R., SundbergD. C.. Poly(vinyl alcohol) as a substrate for indicator immobilization for fiber-optic chemical sensors [J]. Analytical Chemistry, 1989, 61(3): 202-205

[21]

XiaJ.-l., FuJ.-d., NieZ.-y., ShenL.. Preparation, optical properties and cell staining of water soluble amine-terminated PAMAM G 2.0-Au nanocomposites [J]. Journal of Central South University of Technology, 2005, 12(6): 641-646

[22]

WeiW.-z., ZhaiX.-r., ZengJ.-x., GaoY.-p., GongS.-guo.. New amperometric glucose biosensor by entrapping glucose oxidase into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film [J]. Journal of Central South University of Technology, 2007, 14(1): 73-77

[23]

DubertretB., CalameM., LibchaberA. J.. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nature Biotechnology, 2001, 19(4): 365-370

[24]

MaxwellD. J., TaylorJ. R., NieS.. Self-assembled nanoparticle probes for recognition and detection of biomolecules [J]. Journal of the American Chemical Society, 2002, 124(32): 9606-9612

[25]

WatanabeK., NakagawaE., YamadaH., HisamotoH., SuzukiK.. Lithium ion selective optical fiber sensor based on a novel neutral ionophore and a lipophilic anionic dye [J]. Analytical Chemistry, 1993, 65(19): 2704-2710

[26]

KuriharaK., OhtsuM., YoshidaT., AbeT., HisamotoH., SuzukiK.. Micrometer-sized sodium ion-selective optodes based on a “Tailed” neutral ionophore [J]. Analytical Chemistry, 1999, 71(16): 3558-3566

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/