First-principles lattice stability of Fe, Ru and Os

Hui-jin Tao , Jian Yin

Journal of Central South University ›› 2009, Vol. 16 ›› Issue (2) : 177 -183.

PDF
Journal of Central South University ›› 2009, Vol. 16 ›› Issue (2) : 177 -183. DOI: 10.1007/s11771-009-0030-6
Article

First-principles lattice stability of Fe, Ru and Os

Author information +
History +
PDF

Abstract

Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is ΔGBCC-HCPGFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.

Keywords

Fe / Ru / Os / lattice stability / first-principles

Cite this article

Download citation ▾
Hui-jin Tao, Jian Yin. First-principles lattice stability of Fe, Ru and Os. Journal of Central South University, 2009, 16(2): 177-183 DOI:10.1007/s11771-009-0030-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SaundersN., MiodowikA. P., DindaleA. T.. Metastable lattice stabilities for the elements[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 1988, 12(4): 351-374

[2]

DindaleA. T.. SGTE data for pure elements[J]. CALPHAD, 1991, 15(4): 317-425

[3]

JonesR. O., GunarssonO.. The density functional formalism, its applications and prospects [J]. Reviews of Modern Physics, 1989, 61(3): 689-746

[4]

KissavosA. E., ShallcrossS., KaufmanL., GrånäsO., RubanA. V., AbrikosovI. A.. Thermodynamics of ordered and disordered phases in the binary Mo-Ru system[J]. Physical Review B, 2007, 75(18): 184203-184210

[5]

XiaoB., XingJ. D., FengJ., LiY. F., ZhouC. T., SuW., XieX. J., ChenY. H.. Theoretical study on the stability and mechanical property of Cr7C3[J]. Physica B, 2008, 403(13/16): 2273-2281

[6]

PengJ. Z., WangY. F., GrayM. F.. First-principles study of structural stabilities and electronic properties of Mg-Nd intermetallic compounds[J]. Physica B, 2008, 403(13/16): 2344-2348

[7]

LvZ. Q., SunS. H., JiangP., WangB. Z., FuW. T.. First-principles study on the structural stability, electronic and magnetic properties of Fe2C[J]. Computational Materials Science, 2008, 42(4): 692-697

[8]

NakayamaM., MatsunoS., ShirakawaJ., WakiharaM.. First-principles study on phase stability in LixCuSb with heusler-type structure[J]. Journal of Electrochemical Society, 2008, 155(7): 505-511

[9]

BruttiS., Nguyen-ManhD., PettiforD. G.. Lattice stability of Ca, Sr and Yb disilicides[J]. Intermetallics, 2006, 14(12): 1472-1486

[10]

GhoshG., van de WalleA., AstaM.. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM=Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods[J]. Acta Materialia, 2008, 56(13): 3202-3221

[11]

HillyardP. B., GaffneyK. J., LindenbergA. M., EngemannS., AkreR. A., ArthurJ., BlomeC., BucksbaumP. H., CavalieriA. L., DebA., FalconeR. W., FritzD. M., FuossP. H., HajduJ., KrejcikP., LarssonJ., LeeS. H., MeyerD. A., NelsonA. J., PahlR., ReisD. A., RudatiJ., SiddonsD. P.. Carrier-density-dependent lattice stability in InSb[J]. Physical Review Letters, 2007, 98(12): 125501-125504

[12]

AskerC., BelonoshkoA. B., MikhayluskinA. S., AbrikosovA. S.. First-principles solution to the problem of Mo lattice stability[J]. Physical Review B, 2008, 77(22): 220102-220105

[13]

GradG. B., BlahaP., LuitzJ.. Electronic structure and chemical bonding effects upon the bcc to Omega phase transition: Ab initio study of Y, Zr, Nb, and Mo[J]. Physical Review B, 2000, 62(19): 12743-12753

[14]

GuoG. Y., WangH. H.. Calculated elastic constants and electronic and magnetic properties of bcc, fcc, and hcp Cr crystals and thin films[J]. Physical Review B, 2000, 62(8): 5136-5143

[15]

SluiterM. H. F.. Ab initio lattice stabilities of some elemental complex structures[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30(4): 357-366

[16]

Sin’koG. V., SmirnovN. A.. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure[J]. Journal of Physics-Condensed Matter, 2002, 14(29): 6989-7005

[17]

WangY., CurtaroloS., JiangC.. Ab initio lattice stability in comparison with CALPHAD lattice stability[J]. CALPHAD, 2004, 28(1): 79-90

[18]

GhoshG., DelsanteS., BorzontG., AstaM., FerroR.. Phase stability and cohesive properties of Ti-Zn intermetallics: First-principles calculations and experimental results[J]. Acta Materialia, 2006, 54(19): 4977-4997

[19]

GaoM. C., RollettA. D., WidomM.. Lattice stability of aluminum-rare earth binary systems: A first-principles approach[J]. Physical Review B, 2008, 75(17): 174120-174135

[20]

MilmanV., WinklerB., WhiteJ. A., PickardC. J., PayneM. C., AkhmatskayaE. V., NobesR. H.. Electronic structure, properties and phase stability of inorganic crystals: A pseudopotential plane-wave study[J]. International Journal of Quantum Chemistry, 2000, 77(5): 895-910

[21]

PerdewJ. P., BurkeK., ErnzerhofM.. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868

[22]

LiZ.-yu.Properties of novel materials from first principles[D], 2004, Hefei, University of Science and Technology of China

[23]

HohenbergP., KohnW.. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): 864-871

[24]

KohnW., ShamL. J.. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): 1133-1138

[25]

BlahaP., SchwarzK., SorantinP., TrickeyS. B.. Full-potential, linearized augmented plane wave programs for crystalline systems[J]. Computer Physics Communications, 1990, 59(2): 399-415

[26]

JohnP. P., WangY.. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249

[27]

PulayP.. Convergence acceleration of iterative sequences: The case of scf iteration [J]. Chemical Physical Letters, 1980, 73(2): 393-398

[28]

MethfesselM., PaxtonA. T.. High-precision sampling for Brillouin-zone integration in metals[J]. Physical Review B, 1989, 40(6): 3616-3621

[29]

KittelC.Solid state physics[M], 1976, New York, John Wiley and Sons Inc

[30]

MARK W. The University of Sheffield and Webelements Ltd [EB/OL]. 2006. https://doi.org/www.weblements.com

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/