The ecosystem services provided by the Bangladesh Sundarbans contribute in various sectors especially to the livelihood of the surrounding peoples, but they are often overlooked in the valuation process. This study investigates the significance of ecosystem services on peoples’ lives and how these services are affected by climate change and other factors. Here an economic valuation framework was used to list the ecosystem services provided by this mangrove forest. Direct uses included timber, golpata (Nypa fruticans), honey, beeswax, fish, shrimp larvae and tourism. Indirect uses included carbon storage, protection from cyclones and tidal surges, breeding and nursery grounds for the aquatic species, and biodiversity conservation. This work also found that the ecosystem services were diminished by fresh water flow reduction, overharvesting, sea level rise, salinity increase, poaching, and climate change. In the present context and future scenario, sea level rise will be an important contributor to changes in ecosystem services. But because many factors impact sea level rise, the impact of climate change takes on less importance than many other causes of ecosystem service degradation in the Bangladesh Sundarbans.
Genome editing is a valuable tool to target specific DNA sequences for mutagenesis in the genomes of microbes, plants, and animals. Although different genome editing technologies are available, the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which utilizes engineered endonucleases to generate a double-stranded DNA break (DSB) in the target DNA region and subsequently stimulates site-specific mutagenesis through DNA repair machineries, is emerging as a powerful genome editing tool for elucidating mechanisms of protection from plant viruses, plant disease resistance, and gene functions in basic and applied research. In this review, we provide an overview of recent advances in the CRISPR system associated genome editing in plants by focusing on application of this technology in model plants, crop plants, fruit plants, woody plants and grasses and discuss how genome editing associated with the CRISPR system can provide insights into genome modifications and functional genomics in plants.
Genetic transformation systems require protocols that allow regenerating transgenic plants from transformed tissues. This study aimed to establish a protocol for indirect organogenesis in leaf explants of a Eucalyptus grandis × E. urophylla AEC 224 clone. During callogenesis stage, several concentrations of NAA and then NAA or 2,4-D combined with TDZ were tested in JADS culture medium for 30 days, followed by subculture of the explants in the regeneration medium, containing 5.0 µM BA and 0.5 µM NAA for another 30 days. In these media, the explant oxidation rate was high (95 %). Thus, in order to reduce oxidation, different culture media were compared: WPM, MS, JADS and modified QL, followed by explant transfer onto regeneration medium. The highest percentage of regeneration and the lowest oxidation rate were achieved on WPM medium. Then, NAA and 2,4-D were tested in combination with TDZ and also TDZ and BA combined with NAA in WPM medium. The most efficient culture media in terms of shoot regeneration were WPM supplemented with 0.25 µM TDZ and 0.1 µM NAA during 30 days for callus induction and then with 5.0 µM BA and 0.5 µM NAA for another 30 days. This protocol yielded a regeneration rate of 43 %, with a low oxidation of tissues. A rooting experiment was conducted using half strength MS medium and comparing three concentrations of IBA (2.46, 4.90 and 7.35 µM). The highest rooting percentage (35 %) was obtained on medium containing 2.46 µM IBA. Once the shoots were rooted, acclimatization in a greenhouse was not challenging and plant survival reached 100 %.
We developed a shoot multiplication protocol for Syringa reticulata Blume var. mandshurica Hara from in vitro cultured seedlings that derived from in vitro germinated seeds. The shoots could be induced on Murashige and Skoog (MS) medium with proper plant growth regulator combinations of 6-benzylaminopurine (BA) and indole-3-butyric acid (IBA). The better medium for shoot multiplication and growth was MS + 5 mg L−1 BA + 0.5 mg L−1 IBA + 20 g L−1 sucrose + 7 g L−1 agar, and the corresponding shoot induction rate was 75 %. The plantlets grew well after rooting on 1/2MS medium (macro-elements of MS medium are at half-strength) supplemented with 1 mg L−1 IBA, and the survival percentage was >80 % at 16 weeks after transplanting.
A male-specific SCAR DNA marker was developed using a RAPD DNA marker specific for male plants of Salacca zalacca var. zalacca (salak palm). The marker is 1579 bp long and has a GC content of 38.5 %. Its sequence contains 1 or 2 open reading frames, indicating the marker is probably a coding region. No highly similar sequences were found in a search of the GenBank database. Sexes were identified using the SCAR DNA marker for three kinds of seedlings grouped by the number of seeds per fruit (1, 2 or 3). The sex ratio of female to male did not differ significantly from 1:1 for the three kinds of seedlings, implying that the number of seeds per fruit is not a reliable index to identify the sex of a seedling.
Assessing and using tree species (exotic or native) with superior tolerance to environmental stresses (such as drought and high temperature) play an important role in afforestation practices. In the present study, stem sap flow characteristics and responses to ambient meteorological factors of three tree species, Albizzia kalkora (native), Azadirachta indica (exotic), and Acacia auriculaeformis (exotic), in a dry-hot valley (Yuanmou, Yunnan Province, China) were investigated using thermal dissipation probes. The diurnal dynamics of sap flow in three studied species displayed an obvious circadian rhythm during the wet and dry seasons, with the exception of A. indica during the dry season. The sap flow velocity (SFV) in A. kalkora and A. auriculaeformis was significantly positively correlated with photosynthetically active radiation (PAR), air temperature, vapour pressure deficit (VPD) and wind speed, but negatively correlated with atmospheric relative humidity over the two seasons. The cross-correlation analysis also revealed that the SFV of the three species was significantly correlated with PAR and VPD (P < 0.001). Additionally, stem sap flow lagged behind PAR but ahead of VPD, and the diurnal sap flow was more dependent on PAR than on VPD. However, we found that the dominant climatic factor influencing the stem sap flow differed between daytime and nighttime. PAR was more influential than other meteorological factors during the daytime, while VPD or other factors were more influential overnight. When the nighttime refilling ability of the three tree species was compared, our results suggest that A. indica has higher drought resistance and better for afforestation of the studied region.
Defence proteins are a kind of chemical defence compounds. They play a key role in plant restraining biotic and abiotic harm. To illuminate activities of some defense proteins associated with age or plant family of larch, the larch needles were collected from two different families of Korean larch, Larix olgensis and a hybrid larch, L. kaempferi × L. gmelinii, respectively, and then the activities of defence proteins in those were tested using a UV spectrophotometry. The results showed that the activities of protective enzymes at the16-/17- and 19-year-age groups were higher than those at the other age groups in the both larch species. While the activities of polyphenol oxidase (PPO) at the 16-/17-year-age group and phenylalanine ammonia-lyase (PAL) and protease inhibitors at the 19-year-age group were the highest among all age groups. Then, compared with L. olgensis, the hybrid larch had significant effects on the activities of protective enzymes. The effects of plant family on the activities of PAL and chymotrypsin inhibitor were significantly different, and then those on the activities of PPO were not significantly different. The effects of the two families in L. olgensis on the activities of trypsin inhibitor (TI) were significantly different, while those in the hybrid larch on the activities of TI were contrary. To conclusions showed that the different age and plant family significantly affected the activities of defence proteins in the needles of two larch species, and then enhanced the larch resistance to pests. These could play a key function in forestry tree genetic improvement and management in future.
Molecular biological research into wood development and formation has been the focus in recent years, but the pace of discovery of related genes and their functions in the control of wood properties has been slow. The microarray technique—with its advantages of high throughput capacity, sensitivity, and reliability over other tools developed for investigating genes expression patterns—is capable of rapidly assaying thousands of genes. In this study, a cDNA microarray prepared from two cDNA libraries of developing poplar xylem tissues was used to assay gene expression patterns in immature xylem tissues at different heights from the main stem of Populus deltoides (15 years old), which was confirmed to have distinct wood properties (microfibrillar angle, woody density) by X-ray. Two hundred seventy-four transcripts with differential expression profiles between the chips were screened out, and the individual clones were subjected to 5′ sequencing. Using bioinformatic analysis, we identified candidate genes that may influence poplar wood properties, many of which belong to various regulatory and signal transduction gene families, such as zinc finger protein transcription factor, DNA-binding transcription factor, ethylene response factors, and so on. The results suggest that these genes may regulate enzymes involved in wood formation. Further work will be performed to clone these genes and determine how they influence poplar wood properties.
Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil–root with branches interface is determined through the pullout-force and root-slippage curve (F–S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The significance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.
Fire affects the physical and chemical properties and soil biological activity of natural ecosystems. This study was conducted in the Miyan Tang region, Ilam Province in western Iran. The study site was 110 hectares, where we sampled soils in areas that were classified by fire severity: low (LS), high (HS) and medium severity (MS), and unburned (UB), which served as the control. In each severity class, 25 transect points were randomly selected for measurement. Around each transect plot center, 3 soil samples were selected randomly and soils collected from the 0 to 20 cm depth were combined into a composite sample that was used in laboratory analysis to represent conditions at that point. Plots in the UB and LS fire classes had similar soil conditions and had higher values of factors such as saturated moisture, organic carbon, carbon dioxide, and silt and clay content. In contrast, plots in the HS and MS fire severity classes were clustered in the positive direction along the first axis that represented gradients in soil acidity, electrical conductivity, cation exchange capacity, accessible phosphorus, accessible potassium, bulk density, and sand. Soil attributes were similar in areas of HS and MS fire severity classes, whereas soil conditions in the LS class and UB controls were most similar. Fire in the LS areas either did not significantly alter the physical–chemical soil properties and microbial basal respiration, or soils were able to recover quickly after being burned.
Anatomical characteristics have been proven useful for extracting climatic signals. To examine the climatic signals recorded by tree-ring cell features in the Changbai Mountains, we measured cell number and cell lumen diameter, in addition to ring widths, of Korean pine (Pinus koraiensis) tree rings at sites of varied elevation, and we developed chronologies of cell number (CN), mean lumen diameter (MLD), maximum lumen diameter (MAXLD) and tree-ring width (TRW). The chronologies were correlated with climatic factors monthly mean temperature and the sum of precipitation. As shown by our analysis, the cell parameter chronologies were suitable for dendroclimatology studies. CN and TRW shared relatively similar climatic signals which differed from MLD and MAXLD, and growth-climate relationships were elevation-dependent, as shown by the following findings: (1) at each elevation, MLD and MAXLD recorded different monthly climatic signals from those recorded by TRW for the same climatic factors; and (2) MLD and MAXLD recorded climatic factors that were absent from TRW at lower and middle elevations. Cell lumen diameter proved to be an effective archive for improving the climate reconstruction for this study area.
Artemisia ordosica is an excellent sand-fixing shrub for sand stabilization in northwestern China. Sand dune stabilization, a critically important process, leads changes in abiotic factors, such as soil structure and nutrient contents. However, the effects of factors on an A. ordosica community following sand stabilization remain unclear. In this study, we used canonical correspondence analysis (CCA) to examine the relationships between A. ordosica communities and environmental factors at three habitats: semi-fixed dune (SF), fixed dune with low-coverage biological soil crust (F), and fixed dune with high-coverage biological soil crust (FC) in Mu Us desert. The mean height and coverage of plants increased with sand stabilization, while species diversity and richness increased initially and then reduced significantly. Correlation analysis and CCA revealed that slope, soil organic carbon, and nutrient contents, proportion of fine soil particles, soil moisture, and thickness of biological soil crust were all highly correlated with vegetation characteristics. These environmental factors could explain 40.42 % of the vegetation–environment relationships at the three habitats. The distribution of plant species was positively related to soil moisture in the SF dune. Soil moisture, soil nutrient, and fine-particle contents mainly affected plants distribution in the F dune. In the FC dune, distribution of plant species was positively and negatively correlated with the thickness of biological soil crust and soil moisture at a depth 0–20 cm, respectively. The dominance value of typical steppe species increased significantly following sand-dune stabilization and relations between species and samples in CCA ordination bi-plots showed that perennial grasses could invade the A. ordosica community on FC, indicating A. ordosica communities had a tendency to change into typical steppe vegetation with the further fixation. We conclude that the significant differentiation not only occurred in community characteristics, but also in the relationships between vegetation and environmental factors among the three stages of dune fixation. So, restoration of degraded dune ecosystems should be based on habitat conditions and ecological needs.
CO2 concentrations in different plant communities (larch, birch, lilac, and grassland) were measured during the growing season in the Heilongjiang Forest Botanical Garden to study diurnal variation, seasonal and annual dynamics and factors that impact CO2 concentration in different spaces. CO2 concentration in different communities in green lands had an obvious diurnal variation, chronically decreasing, and temperature influenced the lilac area and the grassland. Seasonally, CO2 was lowest in the larch green land (344.03 ± 23.03 μmol/mol) and highest in the grassland (360.13 ± 22.43 μmol/mol). The overall trend in CO2 concentration was autumn > spring > summer; temperature is the main factor controlling variation in CO2 concentrations during the growing season; the CO2 concentration at the larch, birch, lilac, and grassland types of sites was negatively correlated with land surface temperature and air temperature, and the CO2 concentration at the larch and birch sites was positively correlated with atmospheric pressure. Without any obvious annual change law, further study and observation are needed.
For this study in the Ambo State Forest on woody plant diversity, structure and regeneration, 70 quadrats, each 25 m by 25 m, were selected using a systematic random sampling technique and intervals of 100 m along a transect line. For assessing seedlings and saplings, two 2 × 10 m sub quadrats were set upon opposite sides of each main quadrat. Data on species diversity, abundance, structure, basal area, density, frequency and regeneration status were collected and analyzed using standard procedures and programs. Of 58 woody plant species identified, 69 % were trees, 16 % were shrubs, 12 % were tree/shrubs and 4 % were climbers. Fabaceae was the most species-rich family comprising 17 species. The Shannon–Weiner diversity index was 2.73, and evenness was 0.67. The population structure in the cumulative diameter class frequency distribution revealed an interrupted and inverted J-shape with a very high decrease in higher diameter class. Acacia lahai (49 %) was the most important woody species with the highest importance value index. To maintain balanced structure, enhanced regeneration and protecting the forest from selective cutting are recommended.
The status of woody plants in dry-land systems is a fundamental determinant of key ecosystem processes. Monitoring of this status plays an important role in understanding the dynamics of woody plants in arid and semi-arid ecosystems. The present study determined the dynamism of the Zagros forests in Iran using Remote Sensing and Geographic Information System techniques and statistical science. The results show that the density of trees varied from 10 to 53 % according to the physiographic and climatic conditions of semi-arid regions. The best and lowest correlation between vegetation indices and forest density were obtained for the global environmental monitoring index (GEMI; R 2 = 0.94) and soil adjust vegetation index (R 2 = 0.81), respectively. GEMI is used to monitor land use changes over a 10-year period. Results show that 2720 ha2 of forest have been destroyed by human interference and tillage on steep slopes during this period which also resulted in the loss of the fertile soil layer. GEMI determined the areas with a biomass of trees and could normally separate border regions with low biomass density of trees from regions without canopy cover. The results revealed that assessment of forest and vegetation cover in arid and semi-arid arduous forest regions using satellite digital numbers and ordinary sampling is subject to uncertainty. A stratified grouping procedure should be established to increase the accuracy of assessment.
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction.
We examined the mycobiota associated with Vismia guianensis leaf litter in three Atlantic Forest remnants of Brazil’s semiarid region. Among the study sites, two remnants were protected forest reserves, whereas the third was influenced by major anthropogenic activities. Eighteen litter samples were collected in wet and dry seasons and were processed by particle filtration technique. A total of 4750 fungal isolates of 142 taxa were identified. Species richness was higher in litter samples collected during wet season. Nonmetric multidimensional scaling multivariate analysis showed differences in the composition of fungal communities among the sampling sites and the seasons. Analysis of similarity showed that the differences were statistically significant (R = 0.85; P = 0.0001). Our findings revealed that spatial and temporal heterogeneity, and human activities had significant impacts on the saprobic fungi of V. guianensis leaf litter.
In Korea, damaging typhoons related to climate change have increased steadily since the 1990s. Red pine (Pinus densiflora) forests in Gwangneung Forest were greatly disturbed by typhoon Kompasu in 2010. A survey was carried out to clarify differences in ground beetle (Coleoptera: Carabidae) communities between forest gaps and undamaged forests. Ground beetles were sampled using pitfall traps from early May to late October 2011. Vegetation changes, litter layer, organic matter layer, and soil conditions were also measured. A total of 1035 ground beetles of 32 species were collected. Contrary to our expectation, species richness, abundance, and community structure of the ground beetles in forest gaps were similar to those in undamaged forests. Species richness and abundance of habitat type were also similar. However, species diversity and estimated species richness in forest gaps were significantly higher than in undamaged forests. These findings suggest that forest gaps formed by a typhoon did not lead to great change in ground beetle communities.
This study is aimed to investigate the occurrence of Phyllocnistis citrella Stainton (citrus leafminer; CLM), which has recently caused increasing damage to citrus farms in southern South Korea, and its natural enemies, which can act as biological control agents. In the present study, CLM monitoring using sex pheromone traps were conducted in the major citrus farms in the Jeju region in South Korea. Also a survey of parasites was carried out to detect the effective control agent for CLM. During the investigation from 2011 to 2015, a relatively large number of adult CLM (2,386,990) were observed in the sex pheromone traps. The mean annual occurrence of CLM was 477,398, which showed an increasing trend with the increase in temperature. A survey of parasites was conducted in November 2015. Six parasites were found, of which, Quadrastichus sp. and Sympiesis sp. showed the highest rates of parasitism. The mean rate of parasitism during the survey period was 3.97 %. We discovered four new species of parasites of CLM in South Korea.
Leptomastidea angulipennis sp. nov. is described as new to science from Yunnan, China. It can be easily separated from all the other species of the genus by the triangular shape and infuscate pattern of the forewing. Brief diagnoses and new distributional data of L. herbicola and L. rubra are also provided, and a key to the females of all the Chinese species is given.
We compared resistance to decay, mold fungi, termites and insect larvae of particleboards incorporated with the raw boron minerals ulexite and colemanite to that of particleboards impregnated with the commercial boron preservative zinc borate, or boric acid plus a borax mixture. We also quantified water absorption, thickness swell and boron release of particleboards. Ulexite had the best decay resistance, and colemanite had the best termite resistance. However, ulexite and colemanite were not as effective as zinc borate or the boric acid/borax mixture in preventing mold growth. In general, the boric acid/borax mixture combination was more effective against Anobium larvae than the other treatments. Less boron was released by specimens containing zinc borate and colemanite than by those containing ulexite or the boric acid/borax mixture. In general, water absorption and thickness swell were similar among the different treatments, but both were slightly higher in the ulexite-incorporated specimens. Further mechanical tests will be needed to evaluate the particleboard properties and thereby the compatibility of these boron minerals with various manufacturing processes.
The mass and heat transfer mechanisms during radio frequency/vacuum (RF/V) drying of square-edged timber were analyzed and discussed in detail, and a new one-dimensional mathematical model to describe the transport phenomena of mass and heat during continuous RF/V drying was derived from conservation equations based on the mass and heat transfer theory of porous materials. The new model provided a relatively fast and efficient way to simulate vacuum drying behavior assisted by dielectric heating. Its advantages compared with the conventional models include: (1) Each independent variable has a separate control equation and is solved independently by converting the partial differential equation into a difference equation with the finite volume method; (2) The calculated data from different parts of the specimen can be displayed in the evolution curves, and the change law of the parameters can be better described. After analyzing the calculated results, most of the important phenomena observed during RF/V drying were adequately described by this model.