Communities of saprobic fungi on leaf litter of Vismia guianensis in remnants of the Brazilian Atlantic Forest

Loise Araujo Costa , Luís Fernando Pascholati Gusmão

Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (1) : 163 -172.

PDF
Journal of Forestry Research ›› 2016, Vol. 28 ›› Issue (1) : 163 -172. DOI: 10.1007/s11676-016-0268-4
Original Paper

Communities of saprobic fungi on leaf litter of Vismia guianensis in remnants of the Brazilian Atlantic Forest

Author information +
History +
PDF

Abstract

We examined the mycobiota associated with Vismia guianensis leaf litter in three Atlantic Forest remnants of Brazil’s semiarid region. Among the study sites, two remnants were protected forest reserves, whereas the third was influenced by major anthropogenic activities. Eighteen litter samples were collected in wet and dry seasons and were processed by particle filtration technique. A total of 4750 fungal isolates of 142 taxa were identified. Species richness was higher in litter samples collected during wet season. Nonmetric multidimensional scaling multivariate analysis showed differences in the composition of fungal communities among the sampling sites and the seasons. Analysis of similarity showed that the differences were statistically significant (R = 0.85; P = 0.0001). Our findings revealed that spatial and temporal heterogeneity, and human activities had significant impacts on the saprobic fungi of V. guianensis leaf litter.

Keywords

Biodiversity / Conservation / Seasonality / Spatial heterogeneity / Tropical fungi

Cite this article

Download citation ▾
Loise Araujo Costa, Luís Fernando Pascholati Gusmão. Communities of saprobic fungi on leaf litter of Vismia guianensis in remnants of the Brazilian Atlantic Forest. Journal of Forestry Research, 2016, 28(1): 163-172 DOI:10.1007/s11676-016-0268-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allegrucci N, Bucsinszkya AM, Arturib M, Cabello MN. Communities of anamorphic fungi on green leaves and leaf litter of native forests of Scutia buxifolia and Celtis tala ─ Composition, diversity, seasonality and substrate specificity. Rev Iberoam Micol, 2014, 32(2): 71-78.

[2]

Allison SD, Hanson CA, Treseder KK. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem, 2007, 39(8): 1878-1887.

[3]

Amorim AM, Jardim JG, Clifton BC, Fiaschi P, Thomas WW, Carvalho AMV. The vascular plants of a forest fragment in southern Bahia, Brazil. Sida Contrib Bot, 2005, 21: 1727-1752.

[4]

Andrade-Lima D. Prance GT. Present-day forest refuges in Northeastern Brazil. Biological diversification in the tropics. 1982, New York: Columbia University Press, 245 251

[5]

Bills GF, Polishook JD. Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia, 1994, 86: 187-198.

[6]

Bittrich V (2010) Hypericaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://reflora.jbrj.gov.br/jabot/floradobrasil/FB25586. Accessed 26 Apr 2014

[7]

Brown N, Shonil B, Watkinson S. Macrofungal diversity in fragmented and disturbed forests of the Western Ghats of India. J Appl Ecol, 2006, 43: 11-17.

[8]

Buell CB, Weston WH. Application of the mineral oil conservation method to maintaining collections fungus cultures. Am J Bot, 1947, 34: 555-561.

[9]

Cannon PF, Sutton BC. Foster MS, Bills GF, Mueller GM. Microfungi on wood and plant debris. Biodiversity of fungi: inventory and monitoring methods. 2004, Amsterdam: Elsevier, 217 239

[10]

Carrenho R, Gomes-Costa SM. Environmental degradation impact on an urban fragment of a subdeciduous plateau forest on native communities of arbuscular mycorrhizal fungi. Acta Bot Bras, 2011, 25(2): 376-379.

[11]

Castellani A. Maintenance and cultivation of the common pathogenic fungal in sterile distilled water, for the researches. J Trop Med Hyg, 1967, 70: 181-184.

[12]

Cetra M, Barrella W, Langeani-Neto F, Martins AG, Mello BJ, Almeida RS. Fish fauna of headwater streams that cross the Atlantic Forest of south São Paulo state. Check List, 2012, 8(3): 421-425.

[13]

Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics, 1987, 43(4): 783-791.

[14]

Clarke KR. Non-parametric multivariate analysis of changes in community structure. Aust J Ecol, 1993, 18: 117-143.

[15]

Collado J, Platas G, Paulus B, Bills G. High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol, 2007, 60: 521-533.

[16]

Feinstein LM, Blackwood CB. The spatial scaling of saprotrophic fungal beta diversity in decomposing leaves. Mol Ecol, 2013, 22: 1171-1184.

[17]

Grünwald NJ, Goodwin SB, Milgroom MG, Fry WE. Analysis of genotypic diversity data for populations of microorganisms. Anal Theor Plant Pathol, 2003, 93(6): 738-746.

[18]

Hammer O, Harper DAT, Ryan PD (2013) Paleontological statistics, 1.34 v. http://www.folk.uio.no/ohammer/past. Accessed 23 Jan 2014

[19]

Handa T, Aerts R, Berendse F. Consequences of biodiversity loss for litter decomposition across biomes. Nature, 2014, 509: 218-221.

[20]

Hättenschwiller S, Tiunov AV, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Ann Rev Ecol Evol Syst, 2005, 36: 191-218.

[21]

Hättenschwiller S, Fromin N, Barantal S. Functional diversity of terrestrial microbial decomposers and their substrates. C R Biol, 2011, 334: 393-402.

[22]

Ho YWH, Hyde KD. Fungal communities on decaying palm fronds in Australia, Brunei and Hong Kong. Mycol Res, 2001, 105(12): 1458-1471.

[23]

Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, Mckenzie EHC, Photita W, Lumyong S. Diversity of saprobic microfungi. Biodivers Conserv, 2007, 16: 7-35.

[24]

Kodsueb R, Mckenzie EHC, Lumyong S, Hyde KD. Diversity of saprobic fungi on Magnoliaceae. Fungal Divers, 2008, 30: 37-53.

[25]

Kruskall JB. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 1964, 29: 115-129.

[26]

Kumar R, Tapwal A, Baruah DM. Leaf litter decomposition pattern in Dipterocarpus tuberculatus and Dipterocarpus retusus forests of North East India. Res J For, 2012, 6: 24-31.

[27]

Lacap DC, Hyde KD, Liew ECY. An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers, 2003, 12: 53-66.

[28]

Lodge DJ. Factors related to diversity of decomposer fungi in tropical forests. Biodivers Conserv, 1997, 6: 681-688.

[29]

Lodge DJ, Cantrell S. Fungal communities in wet tropical forests: variation on time and space. Can J Bot, 1995, 73: 1391-1398.

[30]

Magurran AE. Ecological diversity and its measurement. 1988, Princeton: Princeton University Press, 177

[31]

Marques MFO, Gusmão LFP, Maia LC. Riqueza de espécies de fungos conidiais em duas áreas de mata atlântica no Morro da Pioneira, Serra da Jibóia, BA, Brasil. Acta Bot Bras, 2008, 22: 954-961.

[32]

McAleece N. Biodiversity Profesional Beta I. 1997, London: The Natural History Museum & The Scottish Association for Marine Science

[33]

Mittermeier R, Gil PR, Hoffmann M, Pilgrim JD, Brooks T, Mittermeier CG, Fonseca GAB. Hotspots revisited: earth’s 7 biologically richest and most endangered ecoregions. 2005, Mexico City: CEMEX & Agrupacion Sierra Madre, 640.

[34]

Monkai J, Promputtha I, Kodsueb R, Chukeatirote E, McKenzie EHC, Hyde KD. Fungi on decaying leaves of Magnolia liliifera and Cinnamomuminers show litter fungi to be hyperdiverse. Mycosphere, 2013, 4(2): 292-301.

[35]

Muthukrishan S, Sanjayan KP, Jahir HK. Species composition, seasonal changes and community ordination of alkalotolerant micro fungal diversity in a natural scrub jungle ecosystem of Tamil Nadu, India. Mycosphere, 2012, 3(2): 92-109.

[36]

Nascimento LD, Rodal MJN, Silva AG. Florística de uma floresta estacional no Planalto da Borborema, nordeste do Brasil. Rodriguésia, 2012, 63(2): 429-440.

[37]

Paulus BC, Gadek P, Hyde K. Estimation of microfungi diversity in tropical rainforest leaf litter using particle filtration: the effects of leaf storage and surface treatment. Mycol Res, 2003, 107: 748-756.

[38]

Paulus BC, Gadek P, Hyde KD. Two new species of Dactylaria (anamorphic fungi) from Australian rainforests and an update of species in Dactylaria sensu lato. Fungal Divers, 2003, 14: 143-156.

[39]

Paulus BC, Kanowski J, Gadek PA, Hyde KD. Diversity and distribuition of saprobic microfungi in leaf litter of an Australian tropical rainforest. Mycol Res, 2006, 110: 1441-1454.

[40]

R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 23 Jan 2014

[41]

Reis PCJ, Rocha WD, Falcão LDA, Guerra TJ, Neves FS. Ant fauna on Cecropia pachystachya Trécul (Urticaceae) trees in an Atlantic Forest area, southeastern Brazil. Sociobiology, 2013, 60(3): 222-228.

[42]

Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv, 2009, 142: 1141-1153.

[43]

Saikia P, Joshi SR. Changes in microfungal community in Cherrapunji—The Wettest Patch on Earth as influenced by heavy rain and soil degradation. Adv Microbiol, 2012, 2(4): 456-464.

[44]

Santana MS, Lodge DJ, Lebow P. Relationship of host recurrence in fungi to rates of tropical leaf decomposition. Pedobiology, 2005, 49: 549-564.

[45]

Santos FLA, Souza MJN. Caracterização geoambiental do planalto cuestiforme da Ibiapaba, Ceará. Eixo temático—geomorfologia e cotidiano. Rev Geonorte, 2012, 2(4): 301-309.

[46]

Santos AMM, Cavalcanti DR, Silva JMC, Tabarelli M. Biogeographical relationships among tropical forests in north-eastern Brazil. J Biogeogr, 2007, 34: 437-446.

[47]

Seephueak P, Phongpaichit S, Hyde KD, Petcharat V. Diversity of saprobic fungi on decaying branch litter of the rubber tree (Hevea brasiliensis). Mycosphere, 2011, 2(4): 307-330.

[48]

Sharma G, Pandey RR, Singh MS. Microfungi associated with surface soil and decaying leaf litter of Quercus serrata in a subtropical natural oak forest and managed plantation in Northeastern India. Afr J Microbiol Res, 2011, 5(7): 777-787.

[49]

Silva JMC, Casteleti CH. Galindo-Leal C, Câmara IG. Status of the biodiversity of the Atlantic Forest of Brazil. The Atlantic Forest of South America: biodiversity status, threats, and outlook. 2003, Washington: Island Press, 43 59

[50]

SOS Mata Atlântica (2013) Mata Atlântica. http://www.sosmatatlantica.org.br. Accessed 20 May 2014

[51]

Tabarelli M, Mantovani W. A riqueza de espécies arbóreas na floresta Atlântica de encosta no estado de São Paulo (Brasil). Rev Bras Bot, 1999, 22: 217-223.

[52]

Tabarelli M, Santos AMM. Porto KC, Cabral JJP, Tabarelli M. Uma breve descrição sobre a história natural dos brejosnordestinos. Brejos de altitudes em Pernambuco e Paraíba: história natural, ecologia e conservação. 2004, Brasília: Ministério do MeioAmbiente, 17 24

[53]

Tabarelli M, Melo MDVC, Lira OC. Campanili M, Prochnow M. A Mata Atlântica do Nordeste. Mata Atlânticaumarede pela Floresta. 2006, Brasília: Rede de Ongs da Mata Atlântica, 149 164

[54]

Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA. Prospects for biodiversity conservation in the Atlantic Forest—lessons from aging human-modified landscapes. Biol Conserv, 2010, 143: 2328-2340.

[55]

Tomasoni MA, Santos SD (2003) Lágrimas da Serra: Os impactos das atividades agropecuárias sobre o geossistema da APA Municipal da Serra da Jibóia, no município de Elísio Medrado. Rio de Janeiro: X Simpósio Nacional de Geografia Física Aplicada, Ed. UFRJ, v.1. http://www.cibergeo.org/XSBGFA/eixo3/3.3/336/336.htm. Accessed 20 May 2014

[56]

Voříšková J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. Multidiscip J Microb Ecol, 2013, 7(3): 477-486.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/