The amount of photosynthetic radiation intercepted by a crop is a function of the incident solar radiation on the plants, the leaf area index (L AI), and the light extinction coefficient (k). We quantified L AI and k in stands of black wattle (Acacia mearnsii De Wild.) over a 7-year growth cycle at two locations in the state of Rio Grande do Sul, Brazil. Our study was conducted in commercial stands in agroecological regions with high densities of black wattle plantations. L AI was calculated as the ratio between the leaf area of a tree and its planting space, and k was derived from Beer’s law. L AI depends on the planting site and stand age. Between the two sites, the L AI was similar over time, the amount of variation differed. Values of k depended only on stand age, with the highest average observed for stands up to 5 years old. The trend of k during the plantation cycle was inversely proportional to L AI and was correlated with L AI, leaf area, leaf dry mass, canopy volume, height, branches dry mass, total dry mass, and crown diameter.
I studied the influence of various combinations of auxin and cytokinin concentrations, and the increased content of zinc and enzymatic casein hydrolizate in SH medium on initiation and proliferation of embryogenic callus of Abies nordmanniana (Steven) Spach. Additionally, the effect of ABA, PEG-4000 and different wavelengths on the maturation of somatic embryos was tested. The use of optimum composition of modified SH medium with BA, KIN and 2.4-D while simultaneously ensuring appropriate external conditions resulted in 15.5 % embryogenesis. Finally, satisfactory results of micropropagation of A. nordmanniana by somatic embryogenesis were obtained providing seven lines of embryogenic callus with high proliferation capacity. Those lines gave properly developed seedlings in white LED light with a wavelength of 400-700 nm, preceded by eight-week vernalization treatment of the callus. This paper may provide a protocol by which all stages of somatic embryogenesis of A. nordmanniana can be carried out, including the preceding 24-h seed disinfection with NaOCl and PVP, which resulted in 100 % frequency of uninfected zygotic embryos that were capable of starting embryogenesis.
Cinchona officinalis (Rubiaceae) is an endemic species of the Loja Valley in southern Ecuador with medicinal uses. Because of over-exploitation in the nineteenth century and more recent disturbances to its ecosystem, C. officinalis populations are threatened. Currently, natural regeneration of the populations is low, despite its high plant regeneration and seed formation capacity. In the present study, an efficient protocol for germination, shoot proliferation and plantlets regeneration was developed for this species. Phenolic content and germination rate of C. officinalis seeds were compared with a control species, C. pubescens. Nodal segments from seedlings of C. officinalis were cultured on Gamborg medium supplemented with different combinations of plant growth regulators. Because the phenol content is high in C. officinalis, the phenolic should be removed with hydrogen peroxide or water washes to stimulate germination. Shoots and callus developed from nodal segments within 45 days using most of the tested combinations of plant growth regulators. The best rates of shoot proliferation, callus formation and adventitious buds were obtained in medium supplemented with 5.0 mg L−1 6-benzyl-aminopurine and 3.0 mg L−1 indole-3-butyric acid.
As of today, the functions of fusoid cell, and the transport and loading pathways of photoassimilate in bamboo leaves are still not clear. In this paper, the leaves of Fargesia yunnanensis from a greenhouse and the wild were respectively used as samples to analyze the anatomical characteristics of fusoid cells and vascular bundles. The results showed that the bamboo leaves from greenhouse got shorter and thinner with fewer layers of palisade parenchyma cells than those from the wild. The volumes of fusoid cells were also increased. Fusoid cells originated from a huge parenchyma cell as testified by the observed nuclei. Several fusoid cells usually formed one cell complex close to the midrib. Crystals were detected in fusoid cells but no pits or plasmodesmata on their walls, suggesting that fusoid cells had the function of regulating water. The presence of fusoid cells determined the major difference between a leaf blade and sheath. There were prominent chloroplasts with simple stroma lamellae in the parenchymatous bundle sheath cells and starch grains were also observed in these chloroplast. Photoassimilates could be transported across vascular bundle sheath via symplasmic pathways for an abundant of plasmodesmata in sheath cell walls, and transported into phloem tube by apoplastic pathway as there were no pits in the walls of companion cells and phloem tubes.
Extensive planting of Bacillus thuringiensis (Bt)-transgenic plants economically benefits society; however, the potential risk they pose is receiving increasing attention. This study used enzyme-linked immunosorbent assay and fluorescence quantitative PCR (RT-PCR) to monitor the temporal and spatial dynamics of the expression of Bt toxic protein in a forest of 6- to 8-year-old trees of transgenic insect-resistant poplar 741 for three consecutive years. The enrichment, distribution, and degradation of Bt toxic protein and the influence of transgenic poplars on the targeted insect population, Hyphantria cunea, were investigated. The content of Cry1Ac toxic protein dynamically changed in transgenic poplar. During the annual growth cycle, the content initially increased, then decreased in the long and the short branches of the crown and in the root system, peaking in August. During the study, the protein did not accumulate overtime. The mRNA transcription of gene Cry1Ac was almost consistent with the level of the protein, but transcription peaked in July. In the transgenic and control forestland, microscale levels of the Cry1Ac toxic protein were detected from the soil, but increased accumulation was not observed with the planting year of transgenic poplar. Meanwhile, Bt was isolated and detected molecularly from the soil in the experimental forestland. A systematic investigation of the density of H. cunea in the experimental transgenic poplar forest indicated that transgenic Pb29 poplar could resist insects to a certain degree. At peak occurrence of the targeted insects, the density of H. cunea in the experimental forest was significantly lower than in the nontransgenic poplar forest.
In this study, using Taxus cuspidata as a raw material, we obtained stable high-yielding cell lines by subculturing and quantified paclitaxel content using ultrasonic extraction combined with TLC–UV spectrophotometry. In single factor and multiple factors tests to optimize design and study the effects of elicitors, precursors, and metabolic inhibitors on paclitaxel production by Taxus cuspidata cells, paclitaxel production reached 4.32 mg/L when 100 μmol/L methyl jasmonate, 20 mg/L salicylic acid, 400 mg/L phenylalanine and 2 mg/L gibberellin (GA3) were added to the culture medium of suspension cells. When adding metabolic adjustment factors on the 7th day of culture, extra- and intracellular paclitaxel production was the highest at 4.855 mg/L, paclitaxel release rate was 10.48 %, fresh mass and paclitaxel production of cell increased, respectively, by 6.08 and 11.57 %. By controlling the anabolism of paclitaxel, paclitaxel yield was significantly improved.
Tea tree oil is extracted from the leaves and twigs of Melaleuca alternifolia (Maiden & Betche) Cheel, and it is widely used in medicines, food preservatives, cosmetics and health care products. Traditional propagation of M. alternifolia from seeds does not necessarily transfer the desired characteristics from their mother trees, the seedlings are not uniform, and the multiplication rate from cuttings is relatively low. For these reasons, it is necessary to develop tissue culture techniques for this species. This study showed that an efficient explant initiation medium for M. alternifolia was MS 1/2 + BA 0.6 mg L−1 + NAA 0.1 mg L−1 + sucrose 30 g L−1, which yielded a 75.9 % initiation rate. An efficient multiplication medium was MS + BA 0.3 mg L−1 + NAA 0.15 mg L−1 + sucrose 30 g L−1, which yielded a 4.3 multiplication rate and 3.2 cm shoot length. The rooting medium was MS 1/2 + IBA 0.1–0.25 mg L−1 + sucrose 15 g L−1, which yielded a 100 % rooting rate, 2.94–3.32 roots per individual and 1.36–1.44 cm root length. Local red-core soil was suitable as a transplant medium, and yielded 98 % survival. This study improved the tissue culture technique for mass-propagation of M. alternifolia, enabling the production of high quality plants for market.
Improved understanding of the link between photosynthesis and below-ground processes is needed to better understand ecosystem carbon (C) cycling and its feedback to climate change. We conducted a short-term shading and nitrogen (N) addition experiment from June to September 2013 to investigate the effect of photosynthate supply by Manchurian Ash (Fraxinus mandshurica) seedlings on soil respiration (SR). Shading significantly reduced SR in early and middle growing season, but not in late growing season, leading to a decrease in mean SR by 24 % in N-unfertilized treatments. N addition increased mean SR by 42 % in un-shaded treatment. The stimulation of SR was largely attributed to accelerated autotrophic respiration by increasing photosynthesis, leaf area index and belowground biomass. Shading reduced mean SR by 32 % in N addition treatment. The strengthened shading effect on SR resulted from N addition was because of more photosynthates supply at low soil temperature. Our findings highlight the predominance of photosynthates supply in regulating the responses of C cycling to global change.
Forest soil carbon (C) is an important component of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0–10 cm) and deep (40–60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C. lanceolata forests. The slope of the straight line between C 60 and labile SOC was steeper than that between C 60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.
Natural forest recovery on abandoned farmland is hindered by a variety of factors and active restoration plays an important role when quick afforestation is desired. We investigated seedling survival of four transplanted native tree species (Quercus myrsinifolia, Quercus serrata, Aphananthe aspera, and Rhus sylvestris) by experimentally manipulating the vegetation cover, which was mainly dominated by dwarf bamboo (Pleioblastus chino), and herbivore access to the planting sites on farmland that had been abandoned for 15 years at the start of the study. Few transplanted seedlings of any species survived under intact vegetation cover, irrespective of herbivore presence. In gaps in the vegetation cover, winter browsing by Japanese hare (Lepus brachyurus) damaged all species. However, lower browsing frequency and higher resprouting ability after grazing of the seedlings enabled both Quercus species to survive better than the other species. These results indicate that dwarf bamboo and the hare jointly limit the establishment of native trees in old fields. If active afforestation by transplanting seedlings at sites dominated by dwarf bamboo is planned, a combination of vegetation removal, selection of suitable species, and temporary seedling protection will be most effective.
We sampled twenty populations of the vulnerable endemic shrub or tree, Arbutus pavarii Pampan., at different elevations and aspects within the Al-Akhdar mountainous region of Libya. Our sampling sites were at elevations ranging from 285 to 738 m above sea level, and several different habitats: vallies (locally known as wadis), north- and south-facing slopes, and mountaintops. All individuals within each quadrat were studied. Population size and structure, and plant functional traits were assessed. None of the populations had a stable distribution of size classes. Some consisted mostly of small plants, with little or no fruit production; others consisted only of mid-sized and large plants, with high fruit production, but no juvenile recruitment. There was a significant increase in percent cover with increasing elevation; reproductive output (the number of fruits per branch and total number of fruits per individual) also generally increased with elevation. In some of these populations the lack of recruitment, and in others the failure to produce fruit, together constituted serious demographic threats. In light of these results, recommendations are made for conservation of this vulnerable endemic species.
Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash (Fraxinus mandshurica) and a Larch (Larix olgensis) plantation in northeastern China. Nutrient retranslocation in the fine roots was investigated using three methods, specifically, nutrient concentration, the ratio of Ca to other elements (Ca/other elements ratio) and nutrient content. The method based on nutrient content proved most suitable when investigating nutrient retranslocation from fine roots of the two species. The nutrient-content-based method showed that there were retranslocations of N, P, K and Mg from the fine roots of Manchurian Ash, with retranslocation efficiencies of 13, 25, 65, and 38 %, respectively, whereas there were no Ca retranslocations. There were retranslocations of N, P, K, Ca and Mg from the fine roots of Larch, with retranslocation efficiencies of 31, 40, 52, 23 and 25 %, respectively.
We investigated the effects of a long-term thinning experiment on the distribution of above-ground biomass of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) in a plantation in southern Italy. Allometric equations were used to estimate biomass and partitioning to stem and crown compartments. Variation in biomass stock estimated with allometric equations were evaluated according to seven thinning treatments: geometric-systematic (1 row every 3), selective (light-moderate-heavy), mixed systematic-selective (1 row every 4, 1 row every 5), unthinned (control). Over the experimental period of 13 years, current annual increments of carbon were lower (3.4 Mg ha−1 year−1) in control plots than in treated plots. At age 30, plots subjected to light selective thinning showed higher values of above-ground biomass (249.7 Mg ha−1). The biomass harvested with this treatment was 29.3 Mg ha−1, and the mean annual increment of carbon over 13 years was 4.8 Mg ha−1. Our results showed that light thinning stimulated increase in carbon stock, with a minimal loss of carbon during the treatment and a current annual increment of carbon higher than in control sub-plots and sub-plots thinned using systematic methods. This treatment yielded least carbon emissions and we affirm it has discrete global warming mitigation potential.
To better promote forest resource management and strengthen the development of forest carbon sink marketization, this paper studied the accounting of forest carbon sinks from 2003 to 2008 based on a system of national accounts (SNA) and data from the latest forest resources inventory in China. The study calculated the value of forest carbon stocks at a total of RMB 817.13 × 109 yuan in 2003 and RMB 839.93 × 109 yuan in 2008, with an average annual increase of 0.55 % from an increase in physical carbon sinks. The total value of forest carbon sinks in 2003 and 2008 was RMB 26.73 × 109 yuan and RMB 29.77 × 109 yuan, respectively, with an average annual growth of 2.18 %. From 2003 to 2008, both stock and flow value of forest carbon sinks increased, but the total net flow value of carbon sinks decreased. The growth rate for the environmentally adjusted Gross Domestic Product (eaGDP) for China’s forest carbon sinks was 17.23 %, outstripping the average growth rate of 9.5 % for the GDP during the same period. The study also indicates that China’s forest carbon sinks affects the GDP in the range of 0.25–0.26 %, and its economic potential is not relatively huge.
Forest losses or gains have long been recognized as critical processes modulating the carbon flux between the biosphere and the atmosphere. Timely, accurate and spatially explicit information on forest disturbance and recovery history is required for assessing the effectiveness of existing forest management. The major objectives of our research focused on testing the mapping efficacy of the vegetation change tracker (VCT) model over a forested area in China. We used a new version of VCT algorithm built upon the Landsat time series stacks (LTSS). The LTSS consisted of yearly image acquisitions to map forest disturbance history from 1987 to 2011 over the Ning-Zhen Mountains, Jiangsu Province of east China. The LTSS consisted of TM and ETM+ scenes with different projections due to distinct data sources (Beijing remote sensing ground station and the USGS EROS Center). The validation results of the disturbance year maps showed that most spatial agreement measures ranged from 70 to 86 %, comparable with the VCT accuracies reported for many places in USA. Very low accuracies were identified in 1995 (38.3 %) and 1992 (56.2 %) in the current analysis. These resulted from the insensitivity of the VCT algorithm to detect low intensity disturbances and also from the mis-registration errors of the image pairs. Major forest disturbance types existing in our study area were identified as agricultural expansion (39.8 %), urbanization (24.9 %), forest management practice (19.3 %), and mining (12.8 %). In general, there was a gradual decreasing trend in forest cover throughout this region, caused principally by China’s economic, demographic, environmental and political policies and decisions, as well as some weather events. While VCT has largely been used to assess long term changes and trends in the USA, it has great potential for assessing landscape level change elsewhere throughout the world.
We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overestimated the amount of deforested area by 1.5–2.4 times the actual deforested area, whereas RSD generated by HR-RSD underestimated the amount of deforested area by 0.4–0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable.
Studying contents and seasonal dynamics of active organic carbon in the soil is an important method for revealing the turnover and regulation mechanism of soil carbon pool. Through 3 years of field sampling and lab analysis, we studied the seasonal variations, content differences, and interrelationships of total organic carbon (TOC), light fraction organic carbon (LFOC), and particulate organic carbon (POC) of the soil in the forest areas burned with different fire intensities in the Daxing’anling Mountains. The mean TOC content in the low-intensity burned area was greater than that in the unburned area, moderate-intensity, and high-intensity burned areas in June and November (P < 0.05). LFOC and POC in the low-intensity burned area were greater than that in either moderate-intensity or high-intensity burned areas, with significant differences in LFOC in September and November (P < 0.05). A significant difference in LFOC between the unburned and burned areas was only found in July (P < 0.05). However, the differences in POC between the unburned and burned areas were not significant in all the whole seasons (P > 0.05). Soil LFOC and POC varied significantly with the seasons (P < 0.05) in the Daxing’anling Mountains. Significant linear relationships were observed between soil TOC, LFOC, and POC, which were positively correlated with soil nitrogen and negatively correlated with soil temperature in the Daxing’anling Mountains.
To prevent, detect, and protect against forest fires, forest personnel need to define rules for determining forest fire risk. In Portugal, all municipalities must annually produce forest fire risk (FFR) maps. To produce more reliable FFR maps more easily, we developed an open source model using the Modeler plugin of SEXTANTE in the program QGIS version 2.0 Dufour. The model provides all the maps involved in the FFR model (susceptibility map, hazard map, vulnerability map, economic value map, and potential loss map) and was produced according to Portuguese Forest Authority’s (AFN, Autoridade Florestal Nacional) rules for determining the FFR. This model was tested for the Portuguese municipality Santa Maria da Feira, where 40 % of the total municipality area falls in the category “very high” or “high” fire risk. The “very high” fire risk area is mainly classified as broad-leaved forest and has the steepest slopes (>15 %). The distance of burned areas to roads was also analyzed; the proportion of burned areas increased with increasing distance to the main roads. In addition, 92.6 % of the “high” and “very high” risk zones were located in areas with lower elevation. These results confirmed that forest fire is strongly influenced not only by environmental factors but also by anthropogenic factors. The procedure implemented here was compared with our open source application already available in QGIS and also to the same procedure implemented in GIS proprietary software. Although the results were obviously the same, the model developed here presents several advantages over the other two approaches. Besides being faster, it is easy to change the model parameters according to user needs (i.e., to the rules of different countries), and can be modified and adapted to other variables and other areas to create risk maps for different natural phenomena (e.g., floods, earthquakes, landslides). The model is easy to use and to create risk and hazard maps rapidly in a free, open source environment that does not require any programming knowledge.
There is growing interest in using ecosystem services to aid development of management strategies that target sustainability and enhance ecosystem support to humans. Challenges remain in the search for methods and indicators that can quantify ecosystem services using metrics that are meaningful in light of their high priorities. We developed a framework to link ecosystems to human wellbeing based on a stepwise approach. We evaluated prospective models in terms of their capacity to quantify national ecosystem services of forests. The most applicable models were subsequently used to quantify ecosystem services. The Korea Forest Research Institute model satisfied all criteria in its first practical use. A total of 12 key ecosystem services were identified. For our case study, we quantified four ecosystem functions, viz. water storage capacity in forest soil for water storage service, reduced suspended sediment for water purification service, reduced soil erosion for landslide prevention service, and reduced sediment yield for sediment regulation service. Water storage capacity in forest soil was estimated at 2142 t/ha, and reduced suspended sediment was estimated at 608 kg/ha. Reduced soil erosion was estimated at 77 m3/ha, and reduced sediment yield was estimated at 285 m3/ha. These results were similar to those reported by previous studies. Mapped results revealed hotspots of ecosystem services around protected areas that were particularly rich in biodiversity. In addition, the proposed framework illustrated that quantification of ecosystem services could be supported by the spatial flow of ecosystem services. However, our approach did not address challenges faced when quantifying connections between ecosystem indicators and actual benefits of services described.
Berberis species are endangered, high-value medicinal plants in Pakistan with important eco-cultural, commercial and livelihood roles in mountain communities. To assess the geographical distribution of Berberis species across the Karakoram Mountain Ranges in Pakistan, we used IUCN Red List Categories and Criteria (2001) to calculate the extent of occurrence (EOO, <100 km2) and the area of occupancy (AOO, <10 km2) of Berberis pseudumbellata subsp. pseudumbellata and B. pseudumbellata subsp. gilgitica. Overgrazing and habitat loss were key population-limiting factors. The two subspecies had contrasting responses to temperature, elevation, precipitation and insect susceptibility. B. pseudumbellata subsp. gilgitica is endemic to Gilgit-Baltistan and grows in single-cropping zone (areas > 200 m a.s.l.). Status evaluation revealed that both subspecies meet the criteria set for critically endangered species. Prolonged disregard of its declining population trend might lead to its extinction; therefore, integrated conservation efforts are necessary.
Ulomoides dermestoides (Chevrolat) (Coleoptera: Tenebrionidae) is one of the most notorious pests in northeastern China. We examined microtrichia on the thorax, elytra and abdomen of U. dermestoides using scanning electron microscopy and recorded their conformations (size, shape and insertion method) and distributions (length, width and location). Possible functions of the microtrichia were (1) stridulation: microtrichia on the inner surface of the elytra interacted with microtrichia on the dorsoventral axis of the thorax or on the costal vein of the hind wing; (2) to increase friction: at the major surface on the middle of the abdominal tergum, hind-wings, inner surface of the medial edge of the elytra and the posterior end of the elytra; (3) protection: the microtrichia covering the posterior face of the abdomen conserved water in the body and protected the body from damage; and (4) sensing organ: the special shape of the microtrichia on the nervation near the vannal fold of the hind wing, the anterio-metapleuron on the metathorax, and the posterior field of the abdomen could perceive the environment. In conclusion, the size and shape of the microtrichia are tightly related to their functions, which may have evolved with the beetles’ lifestyle.
Recent advances in information and communication technologies, such as mobile Internet and smartphones, have created new paradigms for participatory environment monitoring. The ubiquitous mobile phones with capabilities such as a global positioning system, camera, and network access, offer opportunities to establish distributed monitoring networks that can perform a wide range of measurements for a landscape. This study examined the potential of mobile phone-based community monitoring of fall webworm (Hyphantria cunea Drury). We built a prototype of a participatory fall webworm monitoring system based on mobile devices that streamlined data collection, transmission, and visualization. We also assessed the accuracy and reliability of the data collected by the local community. The system performance was evaluated at the Ziya commune of Tianjin municipality in northern China, where fall webworm infestation has occurred. The local community provided data with accuracy comparable to expert measurements (Willmott’s index of agreement >0.85). Measurements by the local community effectively complemented remote sensing images in both temporal and spatial resolution.
Forest logging in the Congo Basin has led to forest fragmentation due to logging infrastructures and felling gaps. In the same vein, forest concessions in the Congo Basin have increasing interest in the REDD+ mechanism. However, there is little information or field data on carbon emissions from forest degradation caused by logging. To help fill this gap, Landsat 7 and 8 and SPOT 4 images of the East Region of Cameroon were processed and combined with field measurements (measurement of forest roads widths, felling gaps and log yards) to assess all disturbed areas. Also, measurements of different types of forest infrastructures helped to highlight emission factors. Forest contributes to 5.18 % of the degradation of the annual allowable cut (AAC) (84.53 ha) corresponding to 4.09 % of forest carbon stock (6.92 t ha−1). Felling gaps constitute the primary source of degradation, represented an estimated area of 32.41 ha (2 % of the cutting area) far ahead of primary roads (18.44 ha) and skid trails (16.36 ha). Assessment of the impact of degradation under the canopy requires the use of high resolution satellite images and field surveys.
Cunninghamia lanceolata (Lamb.) Hook. is economically the most important tree species in southern China and has been cultivated in plantations on a large scale. This species is widely used in construction, furniture, utensils and shipbuilding. Soil fertility of C. lanceolata stands affects soil structure, porosity and nutrient availability, which causes changes in fauna activity. During January to February 2008, an ice storm caused extensive damage to C. lanceolata stands. Despite the environmental importance of soil fauna, basic information on the distribution and diversity of soil fauna in C. lanceolata stands after ice storm damage is lacking. To assess the response of soil fauna diversity and distribution to forest gaps following the ice storm, five small gaps (each 30–40 m2), five large gaps (each 80–100 m2) and five canopy cover plots were selected within a 2-ha C. lanceolata stand. Soil samples were collected from 0 to 10 cm depth in March 2011 to measure soil fauna diversity and abundance. The abundance and community composition of the soil fauna varied with gap size. In canopy cover sites, the number of individuals was 2.0 and 5.2 times greater than in the small gaps and large gaps. Three taxa (Nematoda, Oribatida and Insecta) of soil invertebrates occurred commonly, and Nematoda dominated the communities in all three habitat types. The Shannon–Wiener diversity index, Margalef diversity index, and Pielou evenness index were high in the small gaps, indicating that they harbored the most species, with the most even distribution, and the highest diversity. Our results indicated that gap size apparently affected abundance and community composition of the soil fauna.
By the contingent value method, we studied the non-use value of wetland ecosystem service of Hongxing National Nature Reserve (HNNR) in Heilongjiang Province, northeast China. The proportion of respondents willing to pay (WTP) for protection of HNNR was 63 %. The WTP ratio was affected by geographical area, contact nature, personal preferences, and familiar degree of the respondents. The WTP value was affected by age, education level and career of the respondents. The mainly reasons for people rejecting to pay for protecting HNNR were “I am not familiar to HNNR” and “I had no capacity for additional spending because of low income”. Weighted average individual WTP value was CNY 59.26 Yuan ind.−1 year−1 for all the respondents with WTP. The total non-use ecosystem service value of HNNR was CNY 1430 million Yuan in 2013. The heritage value was highest followed by existence value and option value. From the high ecosystem service value in HNNR, it is very important to construct nature reserve for protecting natural ecosystems and human sustainable use of natural resources.