Possible functions of the microtrichia on the cuticle of Ulomoides dermestoides (Chevrolat) (Coleoptera: Tenebrionidae)

Jingjing Qian , Defu Chi , Rusong Chai

Journal of Forestry Research ›› 2016, Vol. 27 ›› Issue (6) : 1391 -1405.

PDF
Journal of Forestry Research ›› 2016, Vol. 27 ›› Issue (6) : 1391 -1405. DOI: 10.1007/s11676-016-0261-y
Original Paper

Possible functions of the microtrichia on the cuticle of Ulomoides dermestoides (Chevrolat) (Coleoptera: Tenebrionidae)

Author information +
History +
PDF

Abstract

Ulomoides dermestoides (Chevrolat) (Coleoptera: Tenebrionidae) is one of the most notorious pests in northeastern China. We examined microtrichia on the thorax, elytra and abdomen of U. dermestoides using scanning electron microscopy and recorded their conformations (size, shape and insertion method) and distributions (length, width and location). Possible functions of the microtrichia were (1) stridulation: microtrichia on the inner surface of the elytra interacted with microtrichia on the dorsoventral axis of the thorax or on the costal vein of the hind wing; (2) to increase friction: at the major surface on the middle of the abdominal tergum, hind-wings, inner surface of the medial edge of the elytra and the posterior end of the elytra; (3) protection: the microtrichia covering the posterior face of the abdomen conserved water in the body and protected the body from damage; and (4) sensing organ: the special shape of the microtrichia on the nervation near the vannal fold of the hind wing, the anterio-metapleuron on the metathorax, and the posterior field of the abdomen could perceive the environment. In conclusion, the size and shape of the microtrichia are tightly related to their functions, which may have evolved with the beetles’ lifestyle.

Keywords

Coleoptera / Cuticle / Microtrichia / SEM / Ultramicrostructure

Cite this article

Download citation ▾
Jingjing Qian, Defu Chi, Rusong Chai. Possible functions of the microtrichia on the cuticle of Ulomoides dermestoides (Chevrolat) (Coleoptera: Tenebrionidae). Journal of Forestry Research, 2016, 27(6): 1391-1405 DOI:10.1007/s11676-016-0261-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akhave DN, Chaika SY. Morphology and fine structure of chemoreceptor sensilla of antennae and maxillary palpi of the flour moth Ephestia kuehniella Zell. larvae (Lepidoptera, Phycitidae). J Entomologicheskoe Obozrenie, 2004, 83(2): 279-285.

[2]

Anton E, Beutel RG. On the head morphology and systematic position of Helophorus (Coleoptera: Hydrophiloidea: Helophoridae). Zoologischer Anzeiger-A J Comp Zool, 2004, 242(4): 313-346.

[3]

Baehr M. Zur Funktionsmorphologie und evolutiven Bedeutung der elytralen Sperrmechanismen der Scaritini (Coleoptera: Carabidae). J Entomol Gen, 1980, 6(2): 311-333.

[4]

Bhatti JS. Five new species of Dendrothrips Uzel, with a key to the Indian species (Thysanoptera: Thripidae). J Orient Insects, 1971, 5(3): 345-359.

[5]

Boucharda P, Gorb SN. The elytra-to-body binding mechanism of the flightless rainforest species Tabarus montanus Kaszab (Coleoptera: Tenebrionidea). J Arthropod Struct Dev, 2000, 29: 323-331.

[6]

Campbell DJ. Resolution of spatial complexity in a field sample of singing crickets Teleogryllus commodus (Walker) (Gryllidae): a nearest-neighbour analysis. Anim Behav, 1990, 39(05): 1051-1057.

[7]

Chu Z, Xing CY, Yan SC. Comparison of chemical extraction techniques for mproteins from adult beetle of Martianus dermestoides Chevrolat. J Northeast For Univ, 2007, 35(4): 50-52.

[8]

Dai ZD, Yang ZX. Macro-/micro-structures of elytra, mechanical properties of the biomaterial and the coupling strength between elytra in beetles. J Bionic Eng, 2010, 7(1): 6-12.

[9]

Di Giulio A, Rossi Stacconi MV, Romani R. Fine structure of the antennal glands of the ant nest beetle Paussus favieri (Coleoptera, Carabidae Paussini). J Arthropod Struct, 2009, 38: 293-302.

[10]

Di Giulio A, Maurizi E, Stacconi MVR, Romani R. Functional structure of antennal sensilla in the myrmecophilous beetle Paussus favieri (Coleoptera, Carabidae, Paussini). J Micron, 2012, 43(6): 705-719.

[11]

Gorb SN. The inner morphology of arrester system in the damselfly Erythromma najas Hansemann (Zygoptera, Coenagrionidae). J Vestn Zool, 1990, 6: 59-62.

[12]

Gorb SN. Ultrastructural architecture of the microtrichia of the insect cuticle. J Morphol, 1997, 234: 1-10.

[13]

Gorb SN. Frictional surfaces of the elytra-to-body arresting mechanism in Tenebrionid beetles (Coleoptera: Tenebrionidea) design of co-opted fields of microtrichia and cuticle ultrastrure. Int J Insect Morphol Embryol, 1998, 27(3): 205-225.

[14]

Haines C (2000) Arthropod natural enemies in stored products—overlooked and under-exploited. In: Proceedings of the 7th International Working Conference on Stored Product Protection, Beijing, China, pp 1205–1226

[15]

Hyder DE, Oseto CY. Structure of the stridulatory apparatus and analysis of the sound produced by Smicronyx fulvus and Smicronyx sordidus (Coleoptera, Curculionidae, Erirrhininae, Smicronychini). J Morphol, 1989, 201(1): 69-84.

[16]

Kanou M, Morita S, Matsuura T, Yamaguchi T. Morphology and electrophysiology of water receptors on legs of the cricket Gryllus bimaculatus. J Zool Sci, 2007, 24(10): 953-958.

[17]

Kreiss EJ, Schmitz A, Schmitz H. Morphology of the prothoracic discs and associated sensilla of Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). J Arthropod Struct Dev, 2005, 34(4): 419-428.

[18]

Pirisinu Q, Spinelli G, Bicchierai MC. Stridulatory apparatus in the Italian species of the genus Laccobius Erichson (Coleoptera: Hydrophilidae). Int J Insect Morphol Embryol, 1988, 17(2): 95-101.

[19]

Samuelson GA. Jolivet PHA, Cox ML. Binding sites: elytron-to-body meshing structures of possible significance in the higher classification of Chrysomeloidea. Chrysomelidae biology. Volume 1: the classification, phylogeny and genetics. 1996, Amsterdam: SPB Academic Publishing, 267 290

[20]

Schrott A. Vergleichende morphologie and ultrastruktur des cenchrus-dornenfeldapparates bei pflanzenwespen (Insecta: Hymenoptera, Symphyta). J Ber naturwiss Med Ver Innsbruck, 1986, 73: 159-168.

[21]

Sun JY, Bhushan B. Structure and mechanical properties of beetle wings: a review. J RSC Adv, 2012, 2: 12606-12623.

[22]

Tregenza T, Simmons LW, Wedell N, Zuk M. Female preference for male courtship song and its role as a signal of immune function and condition. J Anim Behav, 2006, 72(4): 809-818.

[23]

Wu Q, Wu SP, Chen H. Sensilla types and ultrastructure of Dendroctonus armandi (Coleoptera: Scolytidae). J Northwest A&F Univ Nat Sci Ed, 2012, 40(8): 106-112.

[24]

Yoshida T. Rate of oviposition and effect of crowding on egg cannibalism and pre-adult mortality in Martianus dermestoides Chevrolat (Coleoptera, Tenebrionidae). J Sci Rep Fac Agric Okayama Univ, 1974, 44(1): 9-14.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/