Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties

Rui Yang, Jianuo Fan, Mengtao Sun

PDF(9457 KB)
PDF(9457 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43202. DOI: 10.1007/s11467-022-1176-z
TOPICAL REVIEW
TOPICAL REVIEW

Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties

Author information +
History +

Abstract

Transition metal dichalcogenides (TMDCs) have suitable and adjustable band gaps, high carrier mobility and yield. Layered TMDCs have attracted great attention due to the structure diversity, stable existence in normal temperature environment and the band gap corresponding to wavelength between infrared and visible region. The ultra-thin, flat, almost defect-free surface, excellent mechanical flexibility and chemical stability provide convenient conditions for the construction of different types of TMDCs heterojunctions. The optoelectric properties of heterojunctions based on TMDCs materials are summarized in this review. Special electronic band structures of TMDCs heterojunctions lead to excellent optoelectric properties. The emitter, p-n diodes, photodetectors and photosensitive devices based on TMDCs heterojunction materials show excellent performance. These devices provide a prototype for the design and development of future high-performance optoelectric devices.

Graphical abstract

Keywords

transition metal dichalcogenides (TMDCs) / heterostructures / optoelectric properties

Cite this article

Download citation ▾
Rui Yang, Jianuo Fan, Mengtao Sun. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202 https://doi.org/10.1007/s11467-022-1176-z

References

[1]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D.E. Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
CrossRef ADS Google scholar
[2]
Y.Y. Li, B.Gao, Y.Han, B.K. Chen, J.Y. Huo. Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys. , 2021, 16( 4): 44301
CrossRef ADS Google scholar
[3]
L.Li, Y.Yu, G.J. Ye, Q.Ge, X.Ou, H.Wu, D.Feng, X.H. Chen, Y.Zhang. Black phosphorus field-effect transistors. Nat. Nanotechnol. , 2014, 9( 5): 372
CrossRef ADS Google scholar
[4]
L.Britnell, R.M. Ribeiro, A.Eckmann, R.Jalil, B.D. Belle, A.Mishchenko, Y.J. Kim, R.V. Gorbachev, T.Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C.Casiraghi, A.H. C. Neto, K.S. Novoselov. Strong light−matter interactions in heterostructures of atomically thin films. Science , 2013, 340( 6138): 1311
CrossRef ADS Google scholar
[5]
Z.Q. Wang, T.Y. Lü, H.Q. Wang, Y.P. Feng, J.C. Zheng. Review of borophene and its potential applications. Front. Phys. , 2019, 14( 3): 33403
CrossRef ADS Google scholar
[6]
A.J. Mannix, X.F. Zhou, B.Kiraly, J.D. Wood, D.Alducin, B.D. Myers, X.Liu, B.L. Fisher, U.Santiago, J.R. Guest, M.J. Yacaman, A.Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science , 2015, 350( 6267): 1513
CrossRef ADS Google scholar
[7]
K.S. Novoselov, D.V. Andreeva, W.Ren, G.Shan. Graphene and other two-dimensional materials. Front. Phys. , 2019, 14( 1): 13301
CrossRef ADS Google scholar
[8]
G.H. Han D.L. Duong D. H. Keum S.J. Yun Y.H. Lee, van der Waals metallic transition metal dichalcogenides, Chem. Rev. 118(13), 6297 ( 2018)
[9]
A.U. Liyanage, M.M. Lerner. Use of amine electride chemistry to prepare molybdenum disulfide intercalation compounds. RSC Adv. , 2014, 4( 87): 47121
CrossRef ADS Google scholar
[10]
M.Chhowalla, H.S. Shin, G.Eda, L.J. Li, K.P. Loh, H.Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. , 2013, 5( 4): 263
CrossRef ADS Google scholar
[11]
Q.Zhao, Y.Guo, Y.Zhou, X.Xu, Z.Ren, J.Bai, X.Xu, Flexibleproperties of monolayer MX2 (M = Tc , anisotropic X = S . Se). J. Phys. Chem. C , 2017, 121( 42): 23744
CrossRef ADS Google scholar
[12]
M.Abdulsalam D.P. Joubert, Optical spectrum and excitons in bulk and monolayer MX2 (M = Zr, Hf; X = S, Se) , Phys. Status Solidi B 253(4), 705 ( 2016) (b)
[13]
B.Radisavljevic, A.Radenovic, J.Brivio, V.Giacometti, A.Kis. Single-layer MoS2 transistors. Nat. Nanotechnol. , 2011, 6( 3): 147
CrossRef ADS Google scholar
[14]
O.Lopez-Sanchez, D.Lembke, M.Kayci, A.Radenovic, A.Kis. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. , 2013, 8( 7): 497
CrossRef ADS Google scholar
[15]
H.Zeng, J.Dai, W.Yao, D.Xiao, X.Cui. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. , 2012, 7( 8): 490
CrossRef ADS Google scholar
[16]
W.Zhang, C.P. Chuu, J.K. Huang, C.H. Chen, M.L. Tsai, Y.H. Chang, C.T. Liang, Y.Z. Chen, Y.L. Chueh, J.H. He, M.Y. Chou, L.J. Li. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. , 2015, 4( 1): 3826
CrossRef ADS Google scholar
[17]
C.Cong, J.Shang, X.Wu, B.Cao, N.Peimyoo, C.Qiu, L.Sun, T.Yu. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. , 2014, 2( 2): 131
CrossRef ADS Google scholar
[18]
T.LaMountain, E.J. Lenferink, Y.J. Chen, T.K. Stanev, N.P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys. , 2018, 13( 4): 138114
CrossRef ADS Google scholar
[19]
Y.Liu, Y.Zhou, H.Zhang, F.Ran, W.Zhao, L.Wang, C.Pei, J.Zhang, X.Huang, H.Li. Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Front. Phys. , 2019, 14( 1): 13607
CrossRef ADS Google scholar
[20]
H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T.Nam, H.Kim, J.H. Kim, S.Ryu, S.Im. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. , 2012, 12( 7): 3695
CrossRef ADS Google scholar
[21]
M.M. Furchi, A.Pospischil, F.Libisch, J.Burgdörfer, T.Mueller. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. , 2014, 14( 8): 4785
CrossRef ADS Google scholar
[22]
G.Du, Z.Guo, S.Wang, R.Zeng, Z.Chen, H.Liu. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. , 2010, 46( 7): 1106
CrossRef ADS Google scholar
[23]
M.Benameur, B.Radisavljevic, J.Héron, S.Sahoo, H.Berger, A.Kis. Visibility of dichalcogenide nanolayers. Nanotechnology , 2011, 22( 12): 125706
CrossRef ADS Google scholar
[24]
Q.Ji, Y.Zhang, J.Shi, J.Sun, Y.Zhang, Z.Liu. Morphological Engineering of CVD-grown transition metal dichalcogenides for efficient electrochemical hydrogen evolution. Adv. Mater. , 2016, 28( 29): 6207
CrossRef ADS Google scholar
[25]
S.Imani Yengejeh, W.Wen, Y.Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys. , 2021, 16( 1): 13502
CrossRef ADS Google scholar
[26]
X.Hong, J.Kim, S.F. Shi, Y.Zhang, C.Jin, Y.Sun, S.Tongay, J.Wu, Y.Zhang, F.Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. , 2014, 9( 9): 682
CrossRef ADS Google scholar
[27]
M.L. Tsai, S.H. Su, J.K. Chang, D.S. Tsai, C.H. Chen, C.I. Wu, L.J. Li, L.J. Chen, J.H. He. Monolayer MoS2 heterojunction solar cells. ACS Nano , 2014, 8( 8): 8317
CrossRef ADS Google scholar
[28]
A.K. Geim, I.V. Grigorieva. Van der Waals heterostructures. Nature , 2013, 499( 7459): 419
CrossRef ADS Google scholar
[29]
Y.Y. Wang, F.P. Li, W.Wei, B.B. Huang, Y.Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys. , 2021, 16( 1): 13501
CrossRef ADS Google scholar
[30]
V.O. Özçelik, J.G. Azadani, C.Yang, S.J. Koester, T.Low. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B , 2016, 94( 3): 035125
CrossRef ADS Google scholar
[31]
Z.Zhou, S.Yuan, J.Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Front. Phys. , 2021, 16( 4): 43203
CrossRef ADS Google scholar
[32]
D.Wijethunge, L.Zhang, C.Tang, A.Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. , 2020, 15( 6): 63504
CrossRef ADS Google scholar
[33]
T.Wang, A.Dong, X.Zhang, R.K. Hocking, C.Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys. , 2022, 17( 2): 23501
CrossRef ADS Google scholar
[34]
C.K. Kanade, H.Seok, V.K. Kanade, K.Aydin, H.U. Kim, S.B. Mitta, W.J. Yoo, T.Kim. Low-temperature and large-scale production of a transition metal sulfide vertical heterostructure and its application for photodetectors. ACS Appl. Mater. Interfaces , 2021, 13( 7): 8710
CrossRef ADS Google scholar
[35]
J.I. J. Wang, Y.Yang, Y.A. Chen, K.Watanabe, T.Taniguchi, H.O. Churchill, P.Jarillo-Herrero. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett. , 2015, 15( 3): 1898
CrossRef ADS Google scholar
[36]
K.Chen, X.Wan, J.Wen, W.Xie, Z.Kang, X.Zeng, H.Chen, J.B. Xu. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano , 2015, 9( 10): 9868
CrossRef ADS Google scholar
[37]
L.Dou, Y.M. Yang, J.You, Z.Hong, W.H. Chang, G.Li, Y.Yang. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. , 2014, 5( 1): 5404
CrossRef ADS Google scholar
[38]
Z.Yang, Y.Deng, X.Zhang, S.Wang, H.Chen, S.Yang, J.Khurgin, N.X. Fang, X.Zhang, R.Ma. High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. , 2018, 30( 8): 1704333
CrossRef ADS Google scholar
[39]
F.Withers, O.Del Pozo-Zamudio, A.Mishchenko, A.P. Rooney, A.Gholinia, K.Watanabe, T.Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. , 2015, 14( 3): 301
CrossRef ADS Google scholar
[40]
T.Georgiou, R.Jalil, B.D. Belle, L.Britnell, R.V. Gorbachev, S.V. Morozov, Y.J. Kim, A.Gholinia, S.J. Haigh, O.Makarovsky, L.Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A.Mishchenko. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. , 2013, 8( 2): 100
CrossRef ADS Google scholar
[41]
R.Cheng, D.Li, H.Zhou, C.Wang, A.Yin, S.Jiang, Y.Liu, Y.Chen, Y.Huang, X.Duan. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. , 2014, 14( 10): 5590
CrossRef ADS Google scholar
[42]
D.Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano , 2014, 8( 2): 1102
CrossRef ADS Google scholar
[43]
G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.Chen, M.Chhowalla. Photoluminescence from chemically exfoliated MoS2. Nano Lett. , 2011, 11( 12): 5111
CrossRef ADS Google scholar
[44]
Y.Ma, Y.Dai, M.Guo, C.Niu, B.Huang. Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale , 2011, 3( 9): 3883
CrossRef ADS Google scholar
[45]
Z.Huang, C.He, X.Qi, H.Yang, W.Liu, X.Wei, X.Peng, J.Zhong. Band structure engineering of monolayer MoS2 on h-BN: First-principles calculations. J. Phys. D Appl. Phys. , 2014, 47( 7): 075301
CrossRef ADS Google scholar
[46]
Z.Huang, X.Qi, H.Yang, C.He, X.Wei, X.Peng, J.Zhong. Band-gap engineering of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field. J. Phys. D Appl. Phys. , 2015, 48( 20): 205302
CrossRef ADS Google scholar
[47]
W.Yu, S.Li, Y.Zhang, W.Ma, T.Sun, J.Yuan, K.Fu, Q.Bao. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small , 2017, 13( 24): 1700268
CrossRef ADS Google scholar
[48]
X.Zhao, T.Huang, P.S. Ping, X.Wu, P.Huang, J.Pan, Y.Wu, Z.Cheng. Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors (Basel) , 2018, 18( 7): 2056
CrossRef ADS Google scholar
[49]
Q.Lv, R.Lv. Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: synthesis, transfer and applications. Carbon , 2019, 145 : 240
CrossRef ADS Google scholar
[50]
S.Nakamura, M.Senoh, N.Iwasa, S.N. S. i. Nagahama. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys. , 1995, 34 : L797
CrossRef ADS Google scholar
[51]
Q.A. Vu, W.J. Yu. Electronics and optoelectronics based on two-dimensional materials. J. Korean Phys. Soc. , 2018, 73( 1): 1
CrossRef ADS Google scholar
[52]
S.O. Koswatta, S.J. Koester, W.Haensch. On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Dev. , 2010, 57( 12): 3222
CrossRef ADS Google scholar
[53]
Y.Zhang, W.Ma, Y.Cao, J.Huang, Y.Wei, K.Cui, J.Shao. Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces. IEEE J. Quantum Electron. , 2011, 47( 12): 1475
CrossRef ADS Google scholar
[54]
Q.Zhao, Y.Guo, K.Si, Z.Ren, J.Bai, X.Xu, Elastic properties of bulk, electronic ZrS2. HfSe2 from van der Waals density-functional theory. physica status solidi (b) , 2017, 254 : 1700033
CrossRef ADS Google scholar
[55]
Q.Zhao, Y.Guo, Y.Zhou, Z.Yao, Z.Ren, J.Bai, X.Xu, Bandalignments, heterostructuresof monolayer transition metal trichalcogenides MX3 (M= Zr, Hf; X= S, Se)MX2(M= Tc, dichalcogenides X= S. Se) for solar applications. Nanoscale , 2018, 10( 7): 3547
CrossRef ADS Google scholar
[56]
X.Mu, M.Sun. Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. , 2020, 117( 9): 091601
CrossRef ADS Google scholar
[57]
J.Fan, J.Song, Y.Cheng, M.Sun. Pressure-dependent interfacial charge transfer excitons in WSe2−MoSe2 heterostructures in near infrared region. Results Phys. , 2021, 24 : 104110
CrossRef ADS Google scholar
[58]
X.H. Li, Y.X. Guo, Y.Ren, J.J. Peng, J.S. Liu, C.Wang, H.Zhang. Narrow-bandgap materials for optoelectronics applications. Front. Phys. , 2022, 17( 1): 13304
CrossRef ADS Google scholar
[59]
Z.Z. Yan, Z.H. Jiang, J.P. Lu, Z.H. Ni. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys. , 2018, 13( 4): 138115
CrossRef ADS Google scholar
[60]
N.Zhang, J.Wu, T.Yu, J.Lv, H.Liu, X.Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys. , 2021, 16( 2): 23201
CrossRef ADS Google scholar
[61]
C.Lan, C.Li, S.Wang, T.He, Z.Zhou, D.Wei, H.Guo, H.Yang, Y.Liu. Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C , 2017, 5( 6): 1494
CrossRef ADS Google scholar
[62]
B.Kang, Y.Kim, W.J. Yoo, C.Lee. Ultrahigh photoresponsive device based on ReS2/graphene heterostructure. Small , 2018, 14( 45): 1802593
CrossRef ADS Google scholar
[63]
H.Xu, J.Wu, Q.Feng, N.Mao, C.Wang, J.Zhang. High responsivity and gate tunable grapheme-MoS2 hybrid phototransistor. Small , 2014, 10( 11): 2300
CrossRef ADS Google scholar
[64]
X.Song, X.Liu, D.Yu, C.Huo, J.Ji, X.Li, S.Zhang, Y.Zou, G.Zhu, Y.Wang, M.Wu, A.Xie, H.Zeng. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces , 2018, 10( 3): 2801
CrossRef ADS Google scholar
[65]
C.Huo, X.Liu, Z.Wang, X.Song, H.Zeng. High-performance low-voltage-driven phototransistors through CsPbBr3–2D crystal van der Waals heterojunctions. Adv. Opt. Mater. , 2018, 6( 16): 1800152
CrossRef ADS Google scholar
[66]
S.D. Stranks, H.J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. , 2015, 10( 5): 391
CrossRef ADS Google scholar
[67]
H.S. Jung, N.G. Park. Perovskite solar cells: From materials to devices. Small , 2015, 11( 1): 10
CrossRef ADS Google scholar
[68]
G.Xing, N.Mathews, S.S. Lim, N.Yantara, X.Liu, D.Sabba, M.Grätzel, S.Mhaisalkar, T.C. Sum. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. , 2014, 13( 5): 476
CrossRef ADS Google scholar
[69]
H.Kim, L.Zhao, J.S. Price, A.J. Grede, K.Roh, A.N. Brigeman, M.Lopez, B.P. Rand, N.C. Giebink. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. , 2018, 9( 1): 4893
CrossRef ADS Google scholar
[70]
S.Kumar, J.Jagielski, N.Kallikounis, Y.H. Kim, C.Wolf, F.Jenny, T.Tian, C.J. Hofer, Y.C. Chiu, W.J. Stark, T.W. Lee, C.J. Shih. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett. , 2017, 17( 9): 5277
CrossRef ADS Google scholar
[71]
U.Erkılıç, P.Solís-Fernández, H.G. Ji, K.Shinokita, Y.C. Lin, M.Maruyama, K.Suenaga, S.Okada, K.Matsuda, H.Ago. Vapor phase selective growth of two-dimensional perovskite/WS2 heterostructures for optoelectronic applications. ACS Appl. Mater. Interfaces , 2019, 11( 43): 40503
CrossRef ADS Google scholar
[72]
C.Palacios-Berraquero, D.M. Kara, A.R. P. Montblanch, M.Barbone, P.Latawiec, D.Yoon, A.K. Ott, M.Loncar, A.C. Ferrari, M.Atatüre. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. , 2017, 8( 1): 15093
CrossRef ADS Google scholar
[73]
G.D. Shepard, O.Ajayi, X.Li, X.-Y.Zhu, J.Hone, S.Strauf. Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Mater. , 2017, 4 : 021019
CrossRef ADS Google scholar
[74]
F.Peyskens, C.Chakraborty, M.Muneeb, D.Van Thourhout, D.Englund. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. , 2019, 10( 1): 4435
CrossRef ADS Google scholar
[75]
M.Blauth, M.Jürgensen, G.Vest, O.Hartwig, M.Prechtl, J.Cerne, J.J. Finley, M.Kaniber. Coupling single photons from discrete quantum emitters in WSe2 to lithographically defined plasmonic slot waveguides. Nano Lett. , 2018, 18( 11): 6812
CrossRef ADS Google scholar
[76]
Y.Luo, G.D. Shepard, J.V. Ardelean, D.A. Rhodes, B.Kim, K.Barmak, J.C. Hone, S.Strauf. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. , 2018, 13( 12): 1137
CrossRef ADS Google scholar
[77]
F.Withers, O.Del Pozo-Zamudio, S.Schwarz, S.Dufferwiel, P.Walker, T.Godde, A.Rooney, A.Gholinia, C.Woods, P.Blake, S.J. Haigh, K.Watanabe, T.Taniguchi, I.L. Aleiner, A.K. Geim, V.I. Fal’ko, A.I. Tartakovskii, K.S. Novoselov. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. , 2015, 15( 12): 8223
CrossRef ADS Google scholar
[78]
J.P. So, H.R. Kim, H.Baek, K.Y. Jeong, H.C. Lee, W.Huh, Y.S. Kim, K.Watanabe, T.Taniguchi, J.Kim, C.H. Lee, H.G. Park. Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure. Sci. Adv. , 2021, 7( 43): eabj3176
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91436102 and 11374353) and the Fundamental Research Funds for the Central Universities (Grant No. 06500067).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(9457 KB)

Accesses

Citations

Detail

Sections
Recommended

/