Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging

Qian Zhao, Shijie Tu, Qiannan Lei, Qingyang Yue, Chengshan Guo, Yangjian Cai

PDF(2889 KB)
PDF(2889 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52503. DOI: 10.1007/s11467-022-1169-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging

Author information +
History +

Abstract

The wavefront shaping based technique has been introduced to detect the edges of amplitude objects through complex media, but the extraction of the boundary information of invisible phase objects through complex media has not been demonstrated yet. Here, we present a phase contrast imaging technique to overcome the scattering, aiming to achieve the edge detection of the phase object through the complex media. An operator based on the experimentally measured transmission matrix is obtained by numerically adding a spiral phase in the Fourier domain. With the inverse of the filtered transmission matrix, we can directly reconstruct the edge enhanced images for both amplitude object and phase object beyond scattering. Experimentally, both digital and real objects are imaged, and the results verify that isotropic edge detection can be achieved with our technique. Our work could benefit the detection of invisible phase objects through complex media.

Graphical abstract

Keywords

complex media / edge detection / spiral phase contrast imaging

Cite this article

Download citation ▾
Qian Zhao, Shijie Tu, Qiannan Lei, Qingyang Yue, Chengshan Guo, Yangjian Cai. Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging. Front. Phys., 2022, 17(5): 52503 https://doi.org/10.1007/s11467-022-1169-y

References

[1]
D. Mawet , E. Serabyn , J. K. Wallace , L. Pueyo . Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph. Opt. Lett., 2011, 36( 8): 1506
CrossRef ADS Google scholar
[2]
A. Jesacher , S. Fürhapter , S. Bernet , M. Ritsch-Marte . Shadow effects in spiral phase contrast microscopy. Phys. Rev. Lett., 2005, 94( 23): 233902
CrossRef ADS Google scholar
[3]
F. Qadir , M. Peer , K. Khan . Efficient edge detection methods for diagnosis of lung cancer based on two-dimensional cellular automata. Adv. Appl. Sci. Res., 2012, 3( 4): 2050
[4]
P. Nisthula , R. Yadhu . A novel method to detect bone cancer using image fusion and edge detection. Int. J. Eng. Comp. Sci., 2013, 2( 6): 2012
[5]
T. Zhu , Y. Zhou , Y. Lou , H. Ye , M. Qiu , Z. Ruan , S. Fan . Plasmonic computing of spatial differentiation. Nat. Commun., 2017, 8( 1): 15391
CrossRef ADS Google scholar
[6]
S. Fürhapter , A. Jesacher , S. Bernet , M. Ritsch-Marte . Spiral phase contrast imaging in microscopy. Opt. Express, 2005, 13( 3): 689
CrossRef ADS Google scholar
[7]
S. Bernet , A. Jesacher , S. Fürhapter , C. Maurer , M. Ritsch-Marte . Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express, 2006, 14( 9): 3792
CrossRef ADS Google scholar
[8]
X. Qiu , F. Li , W. Zhang , Z. Zhu , L. Chen . Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination. Optica, 2018, 5( 2): 208
CrossRef ADS Google scholar
[9]
C. Zhou , G. Wang , H. Huang , L. Song , K. Xue . Edge detection based on joint iteration ghost imaging. Opt. Express, 2019, 27( 19): 27295
CrossRef ADS Google scholar
[10]
H. Ren , S. Zhao , J. Gruska . Edge detection based on single-pixel imaging. Opt. Express, 2018, 26( 5): 5501
CrossRef ADS Google scholar
[11]
Y. Liu , P. Yu , X. Hu , Z. Wang , Y. Li , L. Gong . Single-pixel spiral phase contrast imaging. Opt. Lett., 2020, 45( 14): 4028
CrossRef ADS Google scholar
[12]
J. A. Davis , D. E. McNamara , D. M. Cottrell , J. Campos . Image processing with the radial Hilbert transform: Theory and experiments. Opt. Lett., 2000, 25( 2): 99
CrossRef ADS Google scholar
[13]
H. Song , Y. Zhang , Y. Ren , Z. Yuan , D. Zhao , Z. Zheng , L. Gao . Non-local edge enhanced imaging with incoherent thermal light. Appl. Phys. Lett., 2020, 116( 17): 174001
CrossRef ADS Google scholar
[14]
S. K. Liu , Y. H. Li , S. L. Liu , Z. Y. Zhou , Y. Li , C. Yang , G. C. Guo , B. S. Shi . Real-time quantum edge enhanced imaging. Opt. Express, 2020, 28( 24): 35415
CrossRef ADS Google scholar
[15]
X. Zhu , H. Yao , J. Yu , G. Gbur , F. Wang , Y. Chen , Y. Cai . Inverse design of a spatial filter in edge enhanced imaging. Opt. Lett., 2020, 45( 9): 2542
CrossRef ADS Google scholar
[16]
C. S. Guo , Y. J. Han , J. B. Xu , J. Ding . Radial Hilbert transform with Laguerre−Gaussian spatial filters. Opt. Lett., 2006, 31( 10): 1394
CrossRef ADS Google scholar
[17]
Y. Zhou , S. Feng , S. Nie , J. Ma , C. Yuan . Image edge enhancement using Airy spiral phase filter. Opt. Express, 2016, 24( 22): 25258
CrossRef ADS Google scholar
[18]
S. Popoff , G. Lerosey , M. Fink , A. C. Boccara , S. Gigan . Image transmission through an opaque material. Nat. Commun., 2010, 1( 1): 81
CrossRef ADS Google scholar
[19]
J. Bertolotti , E. G. van Putten , C. Blum , A. Lagendijk , W. L. Vos , A. P. Mosk . Non-invasive imaging through opaque scattering layers. Nature, 2012, 491( 7423): 232
CrossRef ADS Google scholar
[20]
Z. Yaqoob , D. Psaltis , M. S. Feld , C. Yang . Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2008, 2( 2): 110
CrossRef ADS Google scholar
[21]
J. Yang , Y. Shen , Y. Liu , A. S. Hemphill , L. V. Wang . Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. Appl. Phys. Lett., 2017, 111( 20): 201108
CrossRef ADS Google scholar
[22]
Y. Choi , C. Yoon , M. Kim , T. D. Yang , C. Fang-Yen , R. R. Dasari , K. J. Lee , W. Choi . Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 2012, 109( 20): 203901
CrossRef ADS Google scholar
[23]
Y. Baek , K. Lee , Y. Park . High-resolution holographic microscopy exploiting speckle-correlation scattering matrix. Phys. Rev. Appl., 2018, 10( 2): 024053
CrossRef ADS Google scholar
[24]
Z. Li , Z. Yu , H. Hui , H. Li , T. Zhong , H. Liu , P. Lai . Edge enhancement through scattering media enabled by optical wavefront shaping. Photon. Res., 2020, 8( 6): 954
CrossRef ADS Google scholar
[25]
S. Popoff , G. Lerosey , R. Carminati , M. Fink , A. Boccara , S. Gigan . Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 2010, 104( 10): 100601
CrossRef ADS Google scholar
[26]
Q. Zhao , P. P. Yu , Y. F. Liu , Z. Q. Wang , Y. M. Li , L. Gong . Light field imaging through a single multimode fiber for OAM-multiplexed data transmission. Appl. Phys. Lett., 2020, 116( 18): 181101
CrossRef ADS Google scholar
[27]
L. Gong , Q. Zhao , H. Zhang , X. Y. Hu , K. Huang , J. M. Yang , Y. M. Li . Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 2019, 8( 1): 27
CrossRef ADS Google scholar
[28]
X. Hu , Q. Zhao , P. Yu , X. Li , Z. Wang , Y. Li , L. Gong . Dynamic shaping of orbital-angular-momentum beams for information encoding. Opt. Express, 2018, 26( 2): 1796
CrossRef ADS Google scholar
[29]
R. Sprik , A. Tourin , J. de Rosny , M. Fink . Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems. Phys. Rev. B, 2008, 78( 1): 012202
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0705000), the National Natural Science Foundation of China (NSFC) (Nos. 12004219, 120742251, 2192254, 91750201, and 11974218), the Innovation Group of Jinan (No. 2018GXRC010), and the Local Science and Technology Development Project of the Central Government (No. YDZX20203700001766).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2889 KB)

Accesses

Citations

Detail

Sections
Recommended

/