Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network

Meng-Qin Jiang, Nan Yang, Jin Li

PDF(2754 KB)
PDF(2754 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 54501. DOI: 10.1007/s11467-021-1150-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network

Author information +
History +

Abstract

In recent years, machine learning models have been introduced into the field of gravitational wave (GW) data processing. In this paper, we apply the convolutional neural network (CNN) to LIGO O1, O2, O3a data analysis to search the released 41 GW events which are emitted from binary black hole (BBH) mergers (here we exclude the events from binary neutron star (BNS) mergers, and the events that are not detected simultaneously by Hanford (H) and Livingston (L) detectors), and use time sliding method to reduce the false alarm rate (FAR). According to the results, the 41 confirmed GW events of BBH mergers can be classified successfully by our CNN model. Furthermore, through restricting the number of consecutive prewarning from sequential samples intercepted continuously in LIGO O2 real time-series and vetoing the coincidences of noise from H and L, the FAR is limited to be less than once in 2 months. It is helpful to promote LIGO real time data processing.

Graphical abstract

Keywords

convolutional neural network / gravitational wave events / false alarm rate

Cite this article

Download citation ▾
Meng-Qin Jiang, Nan Yang, Jin Li. Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network. Front. Phys., 2022, 17(5): 54501 https://doi.org/10.1007/s11467-021-1150-1

References

[1]
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)
[2]
J. Liu, G. Wang, Y. M. Hu, T. Zhang, Z. R. Luo, Q. L. Wang, and L. Shao, GW150914 and gravitational-wave astronomy, Chin. Sci. Bull. 61(14), 1502 (2016)
CrossRef ADS Google scholar
[3]
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9(3), 031040 (2019)
[4]
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)
[5]
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9(3), 031040 (2019)
[6]
A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White, D. A. Brown, and B. Krishnan, 1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public advanced LIGO data, Astrophys. J. 872(2), 195 (2019)
CrossRef ADS Google scholar
[7]
R. Abbott, T. D. Abbott, S. Abraham, et al., GW190412: Observation of a binary-black-hole coalescence with asymmetric masses, Phys. Rev. D 102(4), 043015 (2020)
[8]
R. Abbott, T. D. Abbott, S. Abraham, et al., GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. 896, L44 (2020)
[9]
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW190425: Observation of a compact binary coalescence with total mass ~ 3.4 M, Astrophys. J. 892, L3 (2020)
[10]
R. Abbott, T. D. Abbott, S. Abraham, et al., GW190521: A binary black hole merger with a total mass of 150 M, Phys. Rev. Lett. 125(10), 101102 (2020)
[11]
R. Abbott, et al., GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. X 11, 021053 (2021)
[12]
L. S. Finn, Detection, measurement, and gravitational radiation, Phys. Rev. D 46(12), 5236 (1992)
CrossRef ADS Google scholar
[13]
K. Cannon, R. Cariou, A. Chapman, M. Crispin-Ortuzar, N. Fotopoulos, M. Frei, C. Hanna, E. Kara, D. Keppel, L. Liao, S. Privitera, A. Searle, L. Singer, and A. Weinstein, Toward early-warning detection of gravitational waves from compact binary coalescence, Astrophys. J. 748(2), 136 (2012)
CrossRef ADS Google scholar
[14]
S. A. Usman, A. H. Nitz, I. W. Harry, C. M. Biwer, D. A. Brown, M. Cabero, C. D. Capano, T. D. Canton, T. Dent, S. Fairhurst, M. S. Kehl, D. Keppel, B. Krishnan, A. Lenon, A. Lundgren, A. B. Nielsen, L. P. Pekowsky, H. P. Pfeiffer, P. R. Saulson, M. West, and J. L. Willis, The PyCBC search for gravitational waves from compact binary coalescence, Class. Quantum Grav. 33(21), 215004 (2016)
CrossRef ADS Google scholar
[15]
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observing gravitational-wave transient GW150914 with minimal assumptions, Phys. Rev. D 93(12), 122004 (2016)
CrossRef ADS Google scholar
[16]
I. Harry, S. Privitera, A. Bohe, and A. Buonanno, Searching for gravitational waves from compact binaries with precessing spins, Phys. Rev. D 94(2), 024012 (2016)
CrossRef ADS Google scholar
[17]
R. Smith, S. E. Field, K. Blackburn, C. J. Haster, M. Purrer, V. Raymond, and P. Schmidt, Fast and accurate inference on gravitational waves from precessing compact binaries, Phys. Rev. D 94(4), 044031 (2016)
CrossRef ADS Google scholar
[18]
A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM 60, 84C90 (2017)
CrossRef ADS Google scholar
[19]
J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw. 61, 85 (2015)
CrossRef ADS Google scholar
[20]
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016
[21]
I. Kononenko, Machine learning for medical diagnosis: History, state of the art and perspective, Artif. Intell. Med. 23(1), 89 (2001)
CrossRef ADS Google scholar
[22]
M. Pirooznia, J. Y. Yang, M. Q. Yang, and Y. Deng, A comparative study of different machine learning methods on microarray gene expression data, BMC Genomics 9(S1), S13 (2008)
CrossRef ADS Google scholar
[23]
G. Allen, et al., Deep learning for multi-messenger astrophysics: A gateway for discovery in the big data era, arXiv: 1902.00522 (2019)
[24]
D. George and E. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97(4), 044039 (2018)
CrossRef ADS Google scholar
[25]
M. Chen, Y. H. Zhong, Y. Feng, D. Li, and J. Li, Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array, Sci. China Phys. Mech. Astron. 63(12), 129511 (2020)
CrossRef ADS Google scholar
[26]
C. Escamilla-Rivera, M. A. C. Quintero, and S. Capozziello, A deep learning approach to cosmological dark energy models, J. Cosmol. Astropart. Phys. 03, 008(2020)
CrossRef ADS Google scholar
[27]
D. George, H. Shen, and E. A. Huerta, Classification and unsupervised clustering of LIGO data with deep transfer learning, Phys. Rev. D 97(10), 101501 (2018)
CrossRef ADS Google scholar
[28]
M. Razzano and E. Cuoco, Image-based deep learning for classification of noise transients in gravitational wave detectors, Class. Quantum Grav. 35, 095016 (2018)
CrossRef ADS Google scholar
[29]
E. A. Huerta, D. George, Z. Z. Zhao, and G. Allen, Realtime regression analysis with deep convolutional neural networks, arXiv: 1805.02716(2018)
[30]
D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced LIGO data, Phys. Lett. B 778, 64 (2018)
CrossRef ADS Google scholar
[31]
G. Allen, I. Andreoni, E. Bachelet, G. B. Berriman, F. B. Bianco, et al., Deep learning for multi-messenger astrophysics: A gateway for discovery in the big data era, arXiv: 1902.00522 (2019)
[32]
H. Y. Shen, E. A. Huerta, Z. Z. Zhao, E. Jennings, and H. Sharma, Statistically-informed deep learning for gravitational wave parameter estimation, Mach. Learn. Sci. Tech. 3, 015007 (2022)
CrossRef ADS Google scholar
[33]
C. Chatterjee, L. Wen, K. Vinsen, M. Kovalam, and A. Datta, Using deep learning to localize gravitational wave sources, Phys. Rev. D 100(10), 103025 (2019)
CrossRef ADS Google scholar
[34]
H. Wang, S. Wu, Z. Cao, X. Liu, and J. Y. Zhu, Gravitational-wave signal recognition of LIGO data by deep learning, Phys. Rev. D 101(10), 104003 (2020)
CrossRef ADS Google scholar
[35]
X. Liu, Z. Cao, and L. Shao, Validating the effective-one-body numerical-relativity waveform models for spinaligned binary black holes along eccentric orbits, Phys. Rev. D 101(4), 044049 (2020)
CrossRef ADS Google scholar
[36]
Z. J. Cao and W. B. Han, Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism, Phys. Rev. D 96(4), 044028 (2017)
CrossRef ADS Google scholar
[37]
W. Wei and E. A. Huerta, Gravitational wave denoising of binary black hole mergers with deep learning, Phys. Lett. B 800, 135081 (2020)
CrossRef ADS Google scholar
[38]
X. R. Li, W. L. Yu, X. L. Fan, and G. J. Babu, Some optimizations on detecting gravitational wave using convolutional neural network, Front. Phys. 15(5), 54501 (2020)
CrossRef ADS Google scholar
[39]
J. A. González and F. S. Guzman, Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks, Phys. Rev. D 97(6), 063001 (2018)
CrossRef ADS Google scholar
[40]
B. J. Lin, X. R. Li, and W. L. Yu, Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks, Front. Phys. 15(2), 24602 (2020)
CrossRef ADS Google scholar
[41]
M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Rohani, S. Allen, M. Cabero, K. Crowston, A. K. Katsaggelos, S. L. Larson, et al., Gravity spy: Integrating advanced ligo detector characterization, machine learning, and citizen science, Class. Quantum Grav. 34, 064003 (2017)
CrossRef ADS Google scholar
[42]
J. C. Driggers, S. Vitale, A. P. Lundgren, M. Evans, K. Kawabe, and E. A. Dwyer, Improving astrophysical parameter estimation via offline noise subtraction for advanced LIGO, Phys. Rev. D 99(4), 042001 (2019)
[43]
G. Vajente, Y. Huang, M. Isi, J. C. Driggers, J. S. Kissel, M. J. Szczepanczyk, and S. Vitale, Machine-learning nonstationary noise out of gravitational-wave detectors, Phys. Rev. D 101(4), 042003 (2020)
CrossRef ADS Google scholar
[44]
A. Torres-Forné, E. Cuoco, J. A. Font, and A. Marquina, Application of dictionary learning to denoise LIGO’s blip noise transients, Phys. Rev. D 102(2), 023011 (2020)
CrossRef ADS Google scholar
[45]
W. Wei, A. Khan, E. A. Huerta, X. Huang, and M. Tian, Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers, Phys. Lett. B 812, 136029 (2021)
CrossRef ADS Google scholar
[46]
J. D. Alvares, J. A. Font, F. F. Freitas, O. G. Freitas, A. P. Morais, et al., Exploring gravitational-wave detection and parameter inference using deep learning methods, Class. Quant. Grav. 38, 155010 (2021)
CrossRef ADS Google scholar
[47]
P. G. Krastev, K. Gill, V. A. Villar, and E. Berger, Detection and parameter estimation of gravitational waves from binary neutron-star mergers in real LIGO data using deep learning, Phys. Lett. B 815, 136161 (2021)
CrossRef ADS Google scholar
[48]
B. Zhou, et al., Learning Deep Features for Discriminative Localization, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June, 2016, Las Vegas, NV, IEEE, 2016, pp 2921
CrossRef ADS Google scholar
[49]
S. Liu, A. J. Davison, and E. Johns, Self-Supervised Generalisation with Meta Auxiliary Learning, NIPS, 2019

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2754 KB)

Accesses

Citations

Detail

Sections
Recommended

/