Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network
Meng-Qin Jiang, Nan Yang, Jin Li
Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network
In recent years, machine learning models have been introduced into the field of gravitational wave (GW) data processing. In this paper, we apply the convolutional neural network (CNN) to LIGO O1, O2, O3a data analysis to search the released 41 GW events which are emitted from binary black hole (BBH) mergers (here we exclude the events from binary neutron star (BNS) mergers, and the events that are not detected simultaneously by Hanford (H) and Livingston (L) detectors), and use time sliding method to reduce the false alarm rate (FAR). According to the results, the 41 confirmed GW events of BBH mergers can be classified successfully by our CNN model. Furthermore, through restricting the number of consecutive prewarning from sequential samples intercepted continuously in LIGO O2 real time-series and vetoing the coincidences of noise from H and L, the FAR is limited to be less than once in 2 months. It is helpful to promote LIGO real time data processing.
convolutional neural network / gravitational wave events / false alarm rate
[1] |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)
|
[2] |
J. Liu, G. Wang, Y. M. Hu, T. Zhang, Z. R. Luo, Q. L. Wang, and L. Shao, GW150914 and gravitational-wave astronomy, Chin. Sci. Bull. 61(14), 1502 (2016)
CrossRef
ADS
Google scholar
|
[3] |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9(3), 031040 (2019)
|
[4] |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)
|
[5] |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9(3), 031040 (2019)
|
[6] |
A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White, D. A. Brown, and B. Krishnan, 1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public advanced LIGO data, Astrophys. J. 872(2), 195 (2019)
CrossRef
ADS
Google scholar
|
[7] |
R. Abbott, T. D. Abbott, S. Abraham, et al., GW190412: Observation of a binary-black-hole coalescence with asymmetric masses, Phys. Rev. D 102(4), 043015 (2020)
|
[8] |
R. Abbott, T. D. Abbott, S. Abraham, et al., GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. 896, L44 (2020)
|
[9] |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW190425: Observation of a compact binary coalescence with total mass ~ 3.4 M⊙, Astrophys. J. 892, L3 (2020)
|
[10] |
R. Abbott, T. D. Abbott, S. Abraham, et al., GW190521: A binary black hole merger with a total mass of 150 M⊙, Phys. Rev. Lett. 125(10), 101102 (2020)
|
[11] |
R. Abbott, et al., GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. X 11, 021053 (2021)
|
[12] |
L. S. Finn, Detection, measurement, and gravitational radiation, Phys. Rev. D 46(12), 5236 (1992)
CrossRef
ADS
Google scholar
|
[13] |
K. Cannon, R. Cariou, A. Chapman, M. Crispin-Ortuzar, N. Fotopoulos, M. Frei, C. Hanna, E. Kara, D. Keppel, L. Liao, S. Privitera, A. Searle, L. Singer, and A. Weinstein, Toward early-warning detection of gravitational waves from compact binary coalescence, Astrophys. J. 748(2), 136 (2012)
CrossRef
ADS
Google scholar
|
[14] |
S. A. Usman, A. H. Nitz, I. W. Harry, C. M. Biwer, D. A. Brown, M. Cabero, C. D. Capano, T. D. Canton, T. Dent, S. Fairhurst, M. S. Kehl, D. Keppel, B. Krishnan, A. Lenon, A. Lundgren, A. B. Nielsen, L. P. Pekowsky, H. P. Pfeiffer, P. R. Saulson, M. West, and J. L. Willis, The PyCBC search for gravitational waves from compact binary coalescence, Class. Quantum Grav. 33(21), 215004 (2016)
CrossRef
ADS
Google scholar
|
[15] |
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observing gravitational-wave transient GW150914 with minimal assumptions, Phys. Rev. D 93(12), 122004 (2016)
CrossRef
ADS
Google scholar
|
[16] |
I. Harry, S. Privitera, A. Bohe, and A. Buonanno, Searching for gravitational waves from compact binaries with precessing spins, Phys. Rev. D 94(2), 024012 (2016)
CrossRef
ADS
Google scholar
|
[17] |
R. Smith, S. E. Field, K. Blackburn, C. J. Haster, M. Purrer, V. Raymond, and P. Schmidt, Fast and accurate inference on gravitational waves from precessing compact binaries, Phys. Rev. D 94(4), 044031 (2016)
CrossRef
ADS
Google scholar
|
[18] |
A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM 60, 84C90 (2017)
CrossRef
ADS
Google scholar
|
[19] |
J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw. 61, 85 (2015)
CrossRef
ADS
Google scholar
|
[20] |
I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016
|
[21] |
I. Kononenko, Machine learning for medical diagnosis: History, state of the art and perspective, Artif. Intell. Med. 23(1), 89 (2001)
CrossRef
ADS
Google scholar
|
[22] |
M. Pirooznia, J. Y. Yang, M. Q. Yang, and Y. Deng, A comparative study of different machine learning methods on microarray gene expression data, BMC Genomics 9(S1), S13 (2008)
CrossRef
ADS
Google scholar
|
[23] |
G. Allen, et al., Deep learning for multi-messenger astrophysics: A gateway for discovery in the big data era, arXiv: 1902.00522 (2019)
|
[24] |
D. George and E. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97(4), 044039 (2018)
CrossRef
ADS
Google scholar
|
[25] |
M. Chen, Y. H. Zhong, Y. Feng, D. Li, and J. Li, Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array, Sci. China Phys. Mech. Astron. 63(12), 129511 (2020)
CrossRef
ADS
Google scholar
|
[26] |
C. Escamilla-Rivera, M. A. C. Quintero, and S. Capozziello, A deep learning approach to cosmological dark energy models, J. Cosmol. Astropart. Phys. 03, 008(2020)
CrossRef
ADS
Google scholar
|
[27] |
D. George, H. Shen, and E. A. Huerta, Classification and unsupervised clustering of LIGO data with deep transfer learning, Phys. Rev. D 97(10), 101501 (2018)
CrossRef
ADS
Google scholar
|
[28] |
M. Razzano and E. Cuoco, Image-based deep learning for classification of noise transients in gravitational wave detectors, Class. Quantum Grav. 35, 095016 (2018)
CrossRef
ADS
Google scholar
|
[29] |
E. A. Huerta, D. George, Z. Z. Zhao, and G. Allen, Realtime regression analysis with deep convolutional neural networks, arXiv: 1805.02716(2018)
|
[30] |
D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced LIGO data, Phys. Lett. B 778, 64 (2018)
CrossRef
ADS
Google scholar
|
[31] |
G. Allen, I. Andreoni, E. Bachelet, G. B. Berriman, F. B. Bianco, et al., Deep learning for multi-messenger astrophysics: A gateway for discovery in the big data era, arXiv: 1902.00522 (2019)
|
[32] |
H. Y. Shen, E. A. Huerta, Z. Z. Zhao, E. Jennings, and H. Sharma, Statistically-informed deep learning for gravitational wave parameter estimation, Mach. Learn. Sci. Tech. 3, 015007 (2022)
CrossRef
ADS
Google scholar
|
[33] |
C. Chatterjee, L. Wen, K. Vinsen, M. Kovalam, and A. Datta, Using deep learning to localize gravitational wave sources, Phys. Rev. D 100(10), 103025 (2019)
CrossRef
ADS
Google scholar
|
[34] |
H. Wang, S. Wu, Z. Cao, X. Liu, and J. Y. Zhu, Gravitational-wave signal recognition of LIGO data by deep learning, Phys. Rev. D 101(10), 104003 (2020)
CrossRef
ADS
Google scholar
|
[35] |
X. Liu, Z. Cao, and L. Shao, Validating the effective-one-body numerical-relativity waveform models for spinaligned binary black holes along eccentric orbits, Phys. Rev. D 101(4), 044049 (2020)
CrossRef
ADS
Google scholar
|
[36] |
Z. J. Cao and W. B. Han, Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism, Phys. Rev. D 96(4), 044028 (2017)
CrossRef
ADS
Google scholar
|
[37] |
W. Wei and E. A. Huerta, Gravitational wave denoising of binary black hole mergers with deep learning, Phys. Lett. B 800, 135081 (2020)
CrossRef
ADS
Google scholar
|
[38] |
X. R. Li, W. L. Yu, X. L. Fan, and G. J. Babu, Some optimizations on detecting gravitational wave using convolutional neural network, Front. Phys. 15(5), 54501 (2020)
CrossRef
ADS
Google scholar
|
[39] |
J. A. González and F. S. Guzman, Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks, Phys. Rev. D 97(6), 063001 (2018)
CrossRef
ADS
Google scholar
|
[40] |
B. J. Lin, X. R. Li, and W. L. Yu, Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks, Front. Phys. 15(2), 24602 (2020)
CrossRef
ADS
Google scholar
|
[41] |
M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Rohani, S. Allen, M. Cabero, K. Crowston, A. K. Katsaggelos, S. L. Larson, et al., Gravity spy: Integrating advanced ligo detector characterization, machine learning, and citizen science, Class. Quantum Grav. 34, 064003 (2017)
CrossRef
ADS
Google scholar
|
[42] |
J. C. Driggers, S. Vitale, A. P. Lundgren, M. Evans, K. Kawabe, and E. A. Dwyer, Improving astrophysical parameter estimation via offline noise subtraction for advanced LIGO, Phys. Rev. D 99(4), 042001 (2019)
|
[43] |
G. Vajente, Y. Huang, M. Isi, J. C. Driggers, J. S. Kissel, M. J. Szczepanczyk, and S. Vitale, Machine-learning nonstationary noise out of gravitational-wave detectors, Phys. Rev. D 101(4), 042003 (2020)
CrossRef
ADS
Google scholar
|
[44] |
A. Torres-Forné, E. Cuoco, J. A. Font, and A. Marquina, Application of dictionary learning to denoise LIGO’s blip noise transients, Phys. Rev. D 102(2), 023011 (2020)
CrossRef
ADS
Google scholar
|
[45] |
W. Wei, A. Khan, E. A. Huerta, X. Huang, and M. Tian, Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers, Phys. Lett. B 812, 136029 (2021)
CrossRef
ADS
Google scholar
|
[46] |
J. D. Alvares, J. A. Font, F. F. Freitas, O. G. Freitas, A. P. Morais, et al., Exploring gravitational-wave detection and parameter inference using deep learning methods, Class. Quant. Grav. 38, 155010 (2021)
CrossRef
ADS
Google scholar
|
[47] |
P. G. Krastev, K. Gill, V. A. Villar, and E. Berger, Detection and parameter estimation of gravitational waves from binary neutron-star mergers in real LIGO data using deep learning, Phys. Lett. B 815, 136161 (2021)
CrossRef
ADS
Google scholar
|
[48] |
B. Zhou, et al., Learning Deep Features for Discriminative Localization, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June, 2016, Las Vegas, NV, IEEE, 2016, pp 2921
CrossRef
ADS
Google scholar
|
[49] |
S. Liu, A. J. Davison, and E. Johns, Self-Supervised Generalisation with Meta Auxiliary Learning, NIPS, 2019
|
/
〈 | 〉 |