Pairing symmetry in monolayer of orthorhombic CoSb

Tian-Zhong Yuan, Mu-Yuan Zou, Wen-Tao Jin, Xin-Yuan Wei, Xu-Guang Xu, Wei Li

PDF(5213 KB)
PDF(5213 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 43500. DOI: 10.1007/s11467-020-1040-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Pairing symmetry in monolayer of orthorhombic CoSb

Author information +
History +

Abstract

Ferromagnetism and superconductivity are generally considered to be antagonistic phenomena in condensed matter physics. Here, we theoretically study the interplay between the ferromagnetic and superconducting orders in a recent discovered monolayered CoSb superconductor with an orthorhombic symmetry and net magnetization, and demonstrate the pairing symmetry of CoSb as a candidate of non-unitary superconductor with time-reversal symmetry breaking. By performing the group theory analysis and the first-principles calculations, the superconducting order parameter is suggested to be a triplet pairing with the irreducible representation of 3B2u, which displays intriguing nodal points and non-zero periodic modulation of Cooper pair spin polarization on the Fermi surface topologies. These findings not only provide a significant theoretical insight into the coexistence of superconductivity and ferromagnetism, but also reveal the exotic spin polarized Cooper pairing driven by ferromagnetic spin fluctuations in a triplet superconductor.

Keywords

superconductivity / ferromagnetism / non-unitary pair

Cite this article

Download citation ▾
Tian-Zhong Yuan, Mu-Yuan Zou, Wen-Tao Jin, Xin-Yuan Wei, Xu-Guang Xu, Wei Li. Pairing symmetry in monolayer of orthorhombic CoSb. Front. Phys., 2021, 16(4): 43500 https://doi.org/10.1007/s11467-020-1040-y

References

[1]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[2]
M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)
CrossRef ADS Google scholar
[3]
A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.- Usp. 44(10S), 131 (2001)
CrossRef ADS Google scholar
[4]
D. A. Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors, Phys. Rev. Lett. 86(2), 268 (2001)
CrossRef ADS Google scholar
[5]
L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
CrossRef ADS Google scholar
[6]
K. T. Law, P. A. Lee, and T. K. Ng, Majorana fermion induced resonant Andreev reflection, Phys. Rev. Lett. 103(23), 237001 (2009)
CrossRef ADS Google scholar
[7]
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
CrossRef ADS Google scholar
[8]
G. Xu, B. Lian, P. Tang, X. L. Qi, and S. C. Zhang, Topological superconductivity on the surface of Fe-based superconductors, Phys. Rev. Lett. 117(4), 047001 (2016)
CrossRef ADS Google scholar
[9]
N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)
CrossRef ADS Google scholar
[10]
G. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B 360(2–3), 362 (1991)
CrossRef ADS Google scholar
[11]
N. Read and G. Moore, Fractional quantum Hall effect and nonabelian statistics, Prog. Theor. Phys. Suppl. 107, 157 (1992)
CrossRef ADS Google scholar
[12]
A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (Amsterdam) 303(1), 2 (2003)
CrossRef ADS Google scholar
[13]
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)
CrossRef ADS Google scholar
[14]
J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
CrossRef ADS Google scholar
[15]
C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013)
CrossRef ADS Google scholar
[16]
S. R. Elliott and M. Franz, Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87(1), 137 (2015)
CrossRef ADS Google scholar
[17]
R. Aguado, Majorana quasiparticles in condensed matter, Riv. Nuovo Cim. 40, 523 (2017)
[18]
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices, Science 336(6084), 1003 (2012)
CrossRef ADS Google scholar
[19]
M. Deng, C. Yu, G. Huang, M. Larsson, P. Caroff, and H. Xu, Anomalous zero-bias conductance peak in a Nb– InSb nanowire-Nb hybrid device, Nano Lett. 12(12), 6414 (2012)
CrossRef ADS Google scholar
[20]
A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012)
CrossRef ADS Google scholar
[21]
M. T. Deng, S. Vaitiekènas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Majorana bound state in a coupled quantum-dot hybrid-nanowire system, Science 354(6319), 1557 (2016)
CrossRef ADS Google scholar
[22]
H. Zhang, C. X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G. Wang, N. van Loo, J. D. S. Bommer, M. W. A. de Moor, D. Car, R. L. M. Op het Veld, P. J. van Veldhoven, S. Koelling, M. A. Verheijen, M. Pendharkar, D. J. Pennachio, B. Shojaei, J. Sue Lee, C. J. Palmstrøm, E. P. A. M. Bakkers, S. Das Sarma, and L. P. Kouwenhoven, Quantized Majorana conductance, Nature 556(7699), 74 (2018)
[23]
S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014)
CrossRef ADS Google scholar
[24]
J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114(1), 017001 (2015)
CrossRef ADS Google scholar
[25]
H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma, Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y. Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor, Phys. Rev. Lett. 116(25), 257003 (2016)
CrossRef ADS Google scholar
[26]
A. Banerjee, C. A. Bridges, J. Q. Yan, A. A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler, Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet, Nat. Mater. 15(7), 733 (2016)
CrossRef ADS Google scholar
[27]
J. X. Yin, Z. Wu, J. H. Wang, Z. Y. Ye, J. Gong, X. Y. Hou, L. Shan, A. Li, X. J. Liang, X. X. Wu, J. Li, C. S. Ting, Z. Q. Wang, J. P. Hu, P. H. Hor, H. Ding, and S. H. Pan, Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se), Nat. Phys. 11(7), 543 (2015)
CrossRef ADS Google scholar
[28]
Q. Liu, C. Chen, T. Zhang, R. Peng, Y. J. Yan, C. H. P. Wen, X. Lou, Y. L. Huang, J. P. Tian, X. L. Dong, G. W. Wang, W. C. Bao, Q. H. Wang, Z. P. Yin, Z. X. Zhao, and D. L. Feng, Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe, Phys. Rev. X 8(4), 041056 (2018)
CrossRef ADS Google scholar
[29]
M. Chen, X. Chen, H. Yang, Z. Du, and H. H. Wen, Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures, Sci. Adv. 4(6), eaat1084 (2018)
CrossRef ADS Google scholar
[30]
D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, L. Cao, Y. Sun, S. Du, J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding, and H. J. Gao, Evidence for Majorana bound states in an iron-based superconductor, Science 362(6412), 333 (2018)
CrossRef ADS Google scholar
[31]
S. Zhu, L. Kong, L. Cao, H. Chen, S. Du, Y. Xing, W. Liu, D. Wang, C. Shen, F. Yang, J. Schneeloch, R. Zhong, G. Gu, L. Fu, Y. Y. Zhang, H. Ding, and H. J. Gao, Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor, Science 367, eaax0274 (2019)
CrossRef ADS Google scholar
[32]
C. Chen, K. Jiang, Y. Zhang, C. Liu, Y. Liu, Z. Wang, and J. Wang, Atomic line defects and zero-energy end states in monolayer Fe(Te,Se) high-temperature superconductors, arXiv: 2003.04539 (2020)
CrossRef ADS Google scholar
[33]
C. Liu, C. Chen, X. Liu, Z. Wang, Y. Liu, S. Ye, Z. Q. Wang, J. P. Hu, and J. Wang, Zero-energy bound states in the high-temperature superconductors at the twodimensional limit, Sci. Adv. 6(13), eaax7547 (2020)
CrossRef ADS Google scholar
[34]
M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys. 63(2), 239 (1991)
CrossRef ADS Google scholar
[35]
V. Kozii, J. W. F. Venderbos, and L. Fu, Threedimensional Majorana fermions in chiral superconductors, Sci. Adv. 2(12), e1601835 (2016)
CrossRef ADS Google scholar
[36]
V. Ambegaokar and N. D. Mermin, Thermal anomalies of 3He: Pairing in a magnetic field, Phys. Rev. Lett. 30(3), 81 (1973)
CrossRef ADS Google scholar
[37]
A. J. Leggett, A theoretical description of the new phases of liquid He3, Rev. Mod. Phys. 47(2), 331 (1975)
CrossRef ADS Google scholar
[38]
J. C. Wheatley, Experimental properties of superfluid 3He, Rev. Mod. Phys. 47(2), 415 (1975)
CrossRef ADS Google scholar
[39]
T. Ohmi and K. Machida, Nonunitary superconducting state in UPt3, Phys. Rev. Lett. 71(4), 625 (1993)
CrossRef ADS Google scholar
[40]
J. A. Sauls, The order parameter for the superconducting phases of UPt3, Adv. Phys. 43(1), 113 (1994)
CrossRef ADS Google scholar
[41]
H. Tou, Y. Kitaoka, K. Ishida, K. Asayama, N. Kimura, Y. Ōnuki, E. Yamamoto, Y. Haga, and K. Maezawa, Nonunitary spin-triplet superconductivity in UPt3: Evidence from 195Pt Knight shift study, Phys. Rev. Lett. 80(14), 3129 (1998)
CrossRef ADS Google scholar
[42]
R. Joynt and L. Taillefer, The superconducting phases of UPt3, Rev. Mod. Phys. 74(1), 235 (2002)
CrossRef ADS Google scholar
[43]
A. D. Hillier, J. Quintanilla, and R. Cywinski, Evidence for time-reversal symmetry breaking in the noncentrosymmetric superconductor LaNiC2, Phys. Rev. Lett. 102(11), 117007 (2009)
CrossRef ADS Google scholar
[44]
J. Quintanilla, A. D. Hillier, J. F. Annett, and R. Cywinski, Relativistic analysis of the pairing symmetry of the noncentrosymmetric superconductor LaNiC2, Phys. Rev. B 82(17), 174511 (2010)
CrossRef ADS Google scholar
[45]
A. D. Hillier, J. Quintanilla, B. Mazidian, J. F. Annett, and R. Cywinski, Nonunitary triplet pairing in the centrosymmetric superconductor LaNiGa2, Phys. Rev. Lett. 109(9), 097001 (2012)
CrossRef ADS Google scholar
[46]
S. K. Ghosh, G. Csire, P. Whittlesea, J. F. Annett, M. Gradhand, B. Újfalussy, and J. Quintanilla, Quantitative theory of triplet pairing in the unconventional superconductor LaNiGa2, Phys. Rev. B 101, 100506(R) (2020)
CrossRef ADS Google scholar
[47]
C. Ding, G. Gong, Y. Liu, F. Zheng, Z. Zhang, H. Yang, Z. Li, Y. Xing, J. Ge, K. He, W. Li, P. Zhang, J. Wang, L. Wang, and Q. K. Xue, Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3(001), ACS Nano 13(9), 10434 (2019)
CrossRef ADS Google scholar
[48]
J. F. Annett, Symmetry of the order parameter for high-temperature superconductivity, Adv. Phys. 39(2), 83 (1990)
CrossRef ADS Google scholar
[49]
V. P. Mineev, Superconducting states in ferromagnetic metals, Phys. Rev. B 66(13), 134504 (2002)
CrossRef ADS Google scholar
[50]
K. V. Samokhin and M. B. Walker, Order parameter symmetry in ferromagnetic superconductors, Phys. Rev. B 66(17), 174501 (2002)
CrossRef ADS Google scholar
[51]
D. J. Singh and L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW Method, 2nd Ed., Springer-Verlag, Berlin, 2006
[52]
P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, in: WIEN2K, An Augmented PlaneWave+ Local Orbitals Program for Calculating Crystal Properties, edited by K. Schwarz, Technical University Wien, Austria, 2001
[53]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[54]
W. Li, X. Y. Wei, J. X. Zhu, C. S. Ting, and Y. Chen, Pressure-induced topological quantum phase transition in Sb2Se3, Phys. Rev. B 89(3), 035101 (2014)
CrossRef ADS Google scholar
[55]
J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals, J. Phys. Chem. Solids 10(2-3), 87 (1959)
CrossRef ADS Google scholar
[56]
W. Ding, J. Zeng, W. Qin, P. Cui, and Z. Zhang, Exploringhigh transition temperature superconductivity in a freestanding or SrTiO3-supported CoSb monolayer, Phys. Rev. Lett. 124(2), 027002 (2020)
CrossRef ADS Google scholar
[57]
M. Y. Zou, J. N. Chu, H. Zhang, T. Z. Yuan, P. Cheng, W. T. Jin, D. Jiang, X. G. Xu, W. J. Yu, Z. H. An, X. Y. Wei, G. Mu, and W. Li, Evidence the ferromagnetic order on CoSb layer of LaCoSb2, Phys. Rev. B 101(15), 155138 (2020)
CrossRef ADS Google scholar
[58]
W. Li, J. X. Zhu, Y. Chen, and C. S. Ting, First-principles calculations of the electronic structure of iron-pnictide EuFe2(As,P)2 superconductors: Evidence for antiferromagnetic spin order, Phys. Rev. B 86(15), 155119 (2012)
CrossRef ADS Google scholar
[59]
X. G. Xu and W. Li, Electronic and magnetic structures of ternary iron telluride KFe2Te2, Front. Phys. 10(4), 107403 (2015)
CrossRef ADS Google scholar
[60]
D. J. Singh, Electronic structure and doping in BaFe2As2 and LiFeAs: Density functional calculations, Phys. Rev. B 78(9), 094511 (2008)
CrossRef ADS Google scholar
[61]
W. C. Huang, W. Li, and X. Liu, Exotic ferromagnetism in the two-dimensional quantum materials C3N, Front. Phys. 13(2), 137104 (2018)
CrossRef ADS Google scholar
[62]
Z. Zhou, W. T. Jin, W. Li, S. Nandi, B. Ouladdiaf, Z. Yan, X. Wei, X. Xu, W. H. Jiao, N. Qureshi, Y. Xiao, Y. Su, G. H. Cao, and Th. Brückel, Universal critical behavior in the ferromagnetic superconductor Eu(Fe0.75Ru0.25)2As2, Phys. Rev. B 100, 060406(R) (2019)
CrossRef ADS Google scholar
[63]
J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
CrossRef ADS Google scholar
[64]
S. Maekawa, T. Tohyama, S. E. Barnes, S. Ishihara, W. Koshibae, and G. Khaliullin, Physics of Transition Metal Oxides, Berlin Heidelberg: Springer-Verlag, 2004
CrossRef ADS Google scholar
[65]
W. Li, Z. Liu, Y. S. Wu, and Y. Chen, Exotic fractional topological states in a two-dimensional organometallic material, Phys. Rev. B 89(12), 125411 (2014)
CrossRef ADS Google scholar
[66]
W. Li, J. Li, J. X. Zhu, Y. Chen, and C. S. Ting, Pairing symmetry in the iron-pnictide superconductor KFe2As2, EPL 99(5), 57006 (2012)
CrossRef ADS Google scholar
[67]
K. Hattori and H. Tsunetsugu, p-wave superconductivity near a transverse saturation field, Phys. Rev. B 87(6), 064501 (2013)
CrossRef ADS Google scholar
[68]
Y. Tada, S. Takayoshi, and S. Fujimoto, Magnetism and superconductivity in ferromagnetic heavy-fermion system UCoGe under in-plane magnetic fields, Phys. Rev. B 93(17), 174512 (2016)
CrossRef ADS Google scholar
[69]
C. Kallin and J. Berlinsky, Chiral superconductors, Rep. Prog. Phys. 79(5), 054502 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(5213 KB)

Accesses

Citations

Detail

Sections
Recommended

/