Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics

Halqem Nizamidin, Abduwali Anwar, Sayipjamal Dulat, Kang Li

PDF(159 KB)
PDF(159 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 446-450. DOI: 10.1007/s11467-014-0425-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics

Author information +
History +

Abstract

We study the noncommutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by introducing a shift for the magnetic field, we give the Schrödinger equations in the presence of an external magnetic field both on a noncommutative space and a noncommutative phase space, respectively. Then by solving the Schrödinger equations both on a noncommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. We demonstrate that these phases are geometric and dispersive.

Keywords

noncommutative quantum mechanics / electric quadrupole moment / quantum phase / noncommutative phase space

Cite this article

Download citation ▾
Halqem Nizamidin, Abduwali Anwar, Sayipjamal Dulat, Kang Li. Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics. Front. Phys., 2014, 9(4): 446‒450 https://doi.org/10.1007/s11467-014-0425-1

References

[1]
S. Godfrey and M. A. Doncheski, Signals for noncommutative QED in eγ and γγ collisions, Phys. Rev. D, 2001, 65(1): 015005
CrossRef ADS Google scholar
[2]
M. Haghighat and M. M. Ettefaghi, Parton model in Lorentz invariant noncommutative space, Phys. Rev. D, 2004, 70(3): 034017
CrossRef ADS Google scholar
[3]
A. Devoto, S. Chiara, and W. W. Repko, Noncommutative QED corrections to e+e-→γγγ at linear collider energies, Phys. Rev. D, 2005, 72(5): 056006
CrossRef ADS Google scholar
[4]
X. Calmet, Quantum electrodynamics on noncommutative spacetime, Eur. Phys. J. C, 2007, 50(1): 113
CrossRef ADS Google scholar
[5]
M. Chaichian, A. Demichev, P. Prešnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Aharonov–Bohm effect in noncommutative spaces, Phys. Lett. B, 2002, 527(1-2): 149
CrossRef ADS Google scholar
[6]
M. Chaichian, A. Demichev, P. Presnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Quantum theories on noncommutative spaces with nontrivial topology: Aharonov–Bohm and Casimir effects, Nucl. Phys. B, 2001, 611(1-3): 383
CrossRef ADS Google scholar
[7]
H. Falomir, J. Gamboa, M. Loewe, F. Méndez, and J. Rojas, Testing spatial noncommutativity via the Aharonov–Bohm effect, Phys. Rev. D, 2002, 66(4): 045018
CrossRef ADS Google scholar
[8]
K. Li and S. Dulat, The Aharonov–Bohm effect in noncommutative quantum mechanics, Eur. Phys. J. C, 2006, 46(3): 825
CrossRef ADS Google scholar
[9]
B. Mirza and M. Zarei, Non-commutative quantum mechanics and the Aharonov–Casher effect, Eur. Phys. J. C, 2004, 32(4): 583
CrossRef ADS Google scholar
[10]
K. Li and J. H. Wang, The topological AC effect on noncommutative phase space, Eur. Phys. J. C, 2007, 50(4): 1007
CrossRef ADS Google scholar
[11]
B. Mirza, R. Narimani, and M. Zarei, Aharonov–Casher effect for spin-1 particles in a non-commutative space, Eur. Phys. J. C, 2006, 48(2): 641
CrossRef ADS Google scholar
[12]
S. Dulat and K. Li, The Aharonov–Casher effect for spin-1 particles in non-commutative quantum mechanics, Eur. Phys. J. C, 2008, 54(2): 333
CrossRef ADS Google scholar
[13]
S. Dulat, K. Li, and J. Wang, The He–McKellar–Wilkens effect for spin one particles in non-commutative quantum mechanics, J. Phys. A: Math. Theor., 2008, 41(6): 065303
CrossRef ADS Google scholar
[14]
B. Harms and O. Micu, Noncommutative quantum Hall effect and Aharonov–Bohm effect, J. Phys. A, 2007, 40(33): 10337
CrossRef ADS Google scholar
[15]
O. F. Dayi and A. Jellal, Hall effect in noncommutative coordinates, J. Math. Phys., 2002, 43(10): 4592
CrossRef ADS Google scholar
[16]
O. F. Dayi and A. Jellal, Erratum: “Hall effect in noncommutative coordinates” [J. Math. Phys. 43, 4592 (2002)], J. Math. Phys., 2004, 45(2): 827 (E)
CrossRef ADS Google scholar
[17]
A. Kokado, T. Okamura, and T. Saito, Noncommutative phase space and the Hall effect, Prog. Theor. Phys., 2003, 110(5): 975
CrossRef ADS Google scholar
[18]
S. Dulat and K. Li, Quantum Hall effect in noncommutative quantum mechanics, Eur. Phys. J. C, 2009, 60(1): 163
CrossRef ADS Google scholar
[19]
B. Chakraborty, S. Gangopadhyay, and A. Saha, Seiberg–Witten map and Galilean symmetry violation in a noncommutative planar system, Phys. Rev. D, 2004, 70(10): 107707arXiv: hep-th/0312292
CrossRef ADS Google scholar
[20]
F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, and A. G. Hazra, Dual families of noncommutative quantum systems, Phys. Rev. D, 2005, 71(8): 085005
CrossRef ADS Google scholar
[21]
F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, and J. Govaerts, Interactions and non-commutativity in quantum Hall systems, J. Phys. A, 2005, 38(45): 9849
CrossRef ADS Google scholar
[22]
Ö. F. Dayi and M. Elbistan, Spin Hall effect in noncommutative coordinates, Phys. Lett. A, 2009, 373(15): 1314
CrossRef ADS Google scholar
[23]
K. Ma and S. Dulat, Spin Hall effect on a noncommutative space, Phys. Rev. A, 2011, 84(1): 012104
CrossRef ADS Google scholar
[24]
E. Passos, L. R. Ribeiro, C. Furtado, and J. R. Nascimento, Noncommutative Anandan quantum phase, Phys. Rev. A, 2007, 76(1): 012113
CrossRef ADS Google scholar
[25]
C. C.Chen, Topological quantum phase and multipole moment of neutral particles, Phys. Rev. A, 1995, 51(3): 2611
CrossRef ADS Google scholar
[26]
T. Curtright, D. Fairlie, and C. Zachos, Features of timeindependent Wigner functions, Phys. Rev. D, 1998, 58(2): 025002
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(159 KB)

Accesses

Citations

Detail

Sections
Recommended

/