
Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics
Halqem Nizamidin, Abduwali Anwar, Sayipjamal Dulat, Kang Li
Front. Phys. ›› 2014, Vol. 9 ›› Issue (4) : 446-450.
Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics
We study the noncommutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by introducing a shift for the magnetic field, we give the Schrödinger equations in the presence of an external magnetic field both on a noncommutative space and a noncommutative phase space, respectively. Then by solving the Schrödinger equations both on a noncommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. We demonstrate that these phases are geometric and dispersive.
noncommutative quantum mechanics / electric quadrupole moment / quantum phase / noncommutative phase space
[1] |
S. Godfrey and M. A. Doncheski, Signals for noncommutative QED in eγ and γγ collisions, Phys. Rev. D, 2001, 65(1): 015005
CrossRef
ADS
Google scholar
|
[2] |
M. Haghighat and M. M. Ettefaghi, Parton model in Lorentz invariant noncommutative space, Phys. Rev. D, 2004, 70(3): 034017
CrossRef
ADS
Google scholar
|
[3] |
A. Devoto, S. Chiara, and W. W. Repko, Noncommutative QED corrections to e+e-→γγγ at linear collider energies, Phys. Rev. D, 2005, 72(5): 056006
CrossRef
ADS
Google scholar
|
[4] |
X. Calmet, Quantum electrodynamics on noncommutative spacetime, Eur. Phys. J. C, 2007, 50(1): 113
CrossRef
ADS
Google scholar
|
[5] |
M. Chaichian, A. Demichev, P. Prešnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Aharonov–Bohm effect in noncommutative spaces, Phys. Lett. B, 2002, 527(1-2): 149
CrossRef
ADS
Google scholar
|
[6] |
M. Chaichian, A. Demichev, P. Presnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Quantum theories on noncommutative spaces with nontrivial topology: Aharonov–Bohm and Casimir effects, Nucl. Phys. B, 2001, 611(1-3): 383
CrossRef
ADS
Google scholar
|
[7] |
H. Falomir, J. Gamboa, M. Loewe, F. Méndez, and J. Rojas, Testing spatial noncommutativity via the Aharonov–Bohm effect, Phys. Rev. D, 2002, 66(4): 045018
CrossRef
ADS
Google scholar
|
[8] |
K. Li and S. Dulat, The Aharonov–Bohm effect in noncommutative quantum mechanics, Eur. Phys. J. C, 2006, 46(3): 825
CrossRef
ADS
Google scholar
|
[9] |
B. Mirza and M. Zarei, Non-commutative quantum mechanics and the Aharonov–Casher effect, Eur. Phys. J. C, 2004, 32(4): 583
CrossRef
ADS
Google scholar
|
[10] |
K. Li and J. H. Wang, The topological AC effect on noncommutative phase space, Eur. Phys. J. C, 2007, 50(4): 1007
CrossRef
ADS
Google scholar
|
[11] |
B. Mirza, R. Narimani, and M. Zarei, Aharonov–Casher effect for spin-1 particles in a non-commutative space, Eur. Phys. J. C, 2006, 48(2): 641
CrossRef
ADS
Google scholar
|
[12] |
S. Dulat and K. Li, The Aharonov–Casher effect for spin-1 particles in non-commutative quantum mechanics, Eur. Phys. J. C, 2008, 54(2): 333
CrossRef
ADS
Google scholar
|
[13] |
S. Dulat, K. Li, and J. Wang, The He–McKellar–Wilkens effect for spin one particles in non-commutative quantum mechanics, J. Phys. A: Math. Theor., 2008, 41(6): 065303
CrossRef
ADS
Google scholar
|
[14] |
B. Harms and O. Micu, Noncommutative quantum Hall effect and Aharonov–Bohm effect, J. Phys. A, 2007, 40(33): 10337
CrossRef
ADS
Google scholar
|
[15] |
O. F. Dayi and A. Jellal, Hall effect in noncommutative coordinates, J. Math. Phys., 2002, 43(10): 4592
CrossRef
ADS
Google scholar
|
[16] |
O. F. Dayi and A. Jellal, Erratum: “Hall effect in noncommutative coordinates” [J. Math. Phys. 43, 4592 (2002)], J. Math. Phys., 2004, 45(2): 827 (E)
CrossRef
ADS
Google scholar
|
[17] |
A. Kokado, T. Okamura, and T. Saito, Noncommutative phase space and the Hall effect, Prog. Theor. Phys., 2003, 110(5): 975
CrossRef
ADS
Google scholar
|
[18] |
S. Dulat and K. Li, Quantum Hall effect in noncommutative quantum mechanics, Eur. Phys. J. C, 2009, 60(1): 163
CrossRef
ADS
Google scholar
|
[19] |
B. Chakraborty, S. Gangopadhyay, and A. Saha, Seiberg–Witten map and Galilean symmetry violation in a noncommutative planar system, Phys. Rev. D, 2004, 70(10): 107707arXiv: hep-th/0312292
CrossRef
ADS
Google scholar
|
[20] |
F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, and A. G. Hazra, Dual families of noncommutative quantum systems, Phys. Rev. D, 2005, 71(8): 085005
CrossRef
ADS
Google scholar
|
[21] |
F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, and J. Govaerts, Interactions and non-commutativity in quantum Hall systems, J. Phys. A, 2005, 38(45): 9849
CrossRef
ADS
Google scholar
|
[22] |
Ö. F. Dayi and M. Elbistan, Spin Hall effect in noncommutative coordinates, Phys. Lett. A, 2009, 373(15): 1314
CrossRef
ADS
Google scholar
|
[23] |
K. Ma and S. Dulat, Spin Hall effect on a noncommutative space, Phys. Rev. A, 2011, 84(1): 012104
CrossRef
ADS
Google scholar
|
[24] |
E. Passos, L. R. Ribeiro, C. Furtado, and J. R. Nascimento, Noncommutative Anandan quantum phase, Phys. Rev. A, 2007, 76(1): 012113
CrossRef
ADS
Google scholar
|
[25] |
C. C.Chen, Topological quantum phase and multipole moment of neutral particles, Phys. Rev. A, 1995, 51(3): 2611
CrossRef
ADS
Google scholar
|
[26] |
T. Curtright, D. Fairlie, and C. Zachos, Features of timeindependent Wigner functions, Phys. Rev. D, 1998, 58(2): 025002
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |