RESEARCH ARTICLE

Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs

  • Shuang-Shuang Kong 1 ,
  • Wei-Kai Liu 1 ,
  • Xiao-Xia Yu 2 ,
  • Ya-Lin Li 1 ,
  • Liu-Zhu Yang 1 ,
  • Yun Ma 1 ,
  • Xiao-Yong Fang , 1
Expand
  • 1. Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
  • 2. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
fang@ysu.edu.cn

Received date: 01 Dec 2022

Accepted date: 09 Jan 2023

Copyright

2023 Higher Education Press

Abstract

Silicon carbide nanosheets (SiCNSs) have a very broad application prospect in the field of new two-dimensional (2D) materials. In this paper, the interlayer interaction mechanism of bilayer SiCNSs (BL-SiCNSs) and its effect on optical properties are studied by first principles. Taking the charge and dipole moment of the layers as parameters, an interlayer coupling model is constructed which is more convenient to control the photoelectric properties. The results show that the stronger the interlayer coupling, the smaller the band gap of BL-SiCNSs. The interlayer coupling also changes the number of absorption peaks and causes the red or blue shift of absorption peaks. The strong interlayer coupling can produce obvious dispersion and regulate the optical transmission properties. The larger the interlayer distance, the smaller the permittivity in the vertical direction. However, the permittivity of the parallel direction is negative in the range of 150-300 nm, showing obvious metallicity. It is expected that the results will provide a meaningful theoretical basis for further study of SiCNSs optoelectronic devices.

Cite this article

Shuang-Shuang Kong , Wei-Kai Liu , Xiao-Xia Yu , Ya-Lin Li , Liu-Zhu Yang , Yun Ma , Xiao-Yong Fang . Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs[J]. Frontiers of Physics, 2023 , 18(4) : 43302 . DOI: 10.1007/s11467-023-1263-9

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/10.1007/s11467-023-1263-9 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1263-9.

Acknowledgements

This work was supported by Hebei Natural Science Foundation (Grant No. A2021203030) and the National Natural Science Foundation of China (Grant No. 11574261).
1
J. J. Wang , X. Y. Fang , G. Y. Feng , W. L. Song , Z. L. Hou , H. B. Jin , J. Yuan , M. S. Cao . Scattering mechanisms and anomalous conductivity of heavily N-doped 3C-SiC in ultraviolet region. Phys. Lett. A, 2010, 374(22): 2286

DOI

2
X. L. Feng , M. H. Matheny , C. A. Zorman , M. Mehregany , M. L. Roukes . Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Lett., 2010, 10(8): 2891

DOI

3
X. Y. Fang , K. Wang , Z. L. Hou , H. B. Jin , Y. Q. Li , M. S. Cao . Electronic scattering leads to anomalous thermal conductivity of n-type cubic silicon carbide in the high-temperature region. J. Phys. :Condens. Matter, 2012, 24(44): 445802

DOI

4
R. Maboudian , C. Carraro , D. G. Senesky , C. S. Roper . Advances in silicon carbide science and technology at the micro- and nanoscales. J. Vac. Sci. Technol. A, 2013, 31(5): 050805

DOI

5
H.Okumura, A roadmap for future wide bandgap semiconductor power electronics, MRS Bull. 40(5), 439 (2015)

6
B.WhitakerA.BarkleyZ.ColeB.PassmoreD.MartinT.R. McNuttA.B. LostetterJ.S. LeeK.Shiozaki, A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices, IEEE Trans. Power Electron. 29(5), 2606 (2014)

7
H. Ou , Y. Ou , A. Argyraki , S. Schimmel , M. Kaiser , P. Wellmann , M. K. Linnarsson , V. Jokubavicius , J. Sun , R. Liljedahl , M. Syväjärvi . Advances in wide bandgap SiC for optoelectronics. Eur. Phys. J. B, 2014, 87(3): 58

DOI

8
G. Cheng , T. H. Chang , Q. Qin , H. Huang , Y. Zhu . Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density. Nano Lett., 2014, 14(2): 754

DOI

9
M. Awais , H. Mousa , K. Teker . Effect of pH on transport characteristics of silicon carbide nanowire field-effect transistor (SiCNW-FET). J. Mater. Sci. Mater. Electron., 2021, 32(3): 3431

DOI

10
X. Zhang , J. Wang , Z. Yang , X. Tang , Y. Yue . Strong structural occupation ratio effect on mechanical properties of silicon carbide nanowires. Sci. Rep., 2020, 10(1): 11386

DOI

11
S. Li , J. Li , Q. Su , X. Liu , H. Zhao , M. Ding . Enhanced n-type conductivity of 6H-SiC nanowires by nitrogen doping. Micro & Nano Lett., 2019, 14(9): 999

DOI

12
H. Gao , H. Wang , M. Niu , L. Su , X. Fan , J. Wen , Y. Wei . Oxidation simulation study of silicon carbide nanowires: A carbon-rich interface state. Appl. Surf. Sci., 2019, 493: 882

DOI

13
Y. H. Jia , P. Gong , S. L. Li , W. D. Ma , X. Y. Fang , Y. Y. Yang , M. S. Cao . Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires. Phys. Lett. A, 2020, 384(4): 126106

DOI

14
P.NematollahiM.D. Esrafili, A DFT study on the N2O reduction by CO molecule over silicon carbide nanotubes and nanosheets, RSC Adv. 6(64), 59091 (2016)

15
R. S. Singh , A. Solanki . Modulation of electronic properties of silicon carbide nanotubes via sulphur-doping: An ab initio study. Phys. Lett. A, 2016, 380(11−12): 1201

DOI

16
W.Q. LinF.LiG.H. ChenS.T. XiaoL.Y. WangQ.Wang, A study on the adsorptions of SO2 on pristine and phosphorus-doped silicon carbide nanotubes as potential gas sensors, Ceram. Int. 46(16), 25171 (2020)

17
Y. Y. Yang , P. Gong , W. D. Ma , R. Hao , X. Y. Fang . Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes. Chin. Phys. B, 2021, 30(6): 067803

DOI

18
P. Gong , Y. Y. Yang , W. D. Ma , X. Y. Fang , X. L. Jing , Y. H. Jia , M. S. Cao . Transport and recombination properties of group-III doped SiCNTs. Physica E, 2021, 128: 114578

DOI

19
J. M. Zhang , F. L. Zheng , Y. Zhang , V. Ji . First-principles study on electronic properties of SiC nanoribbon. J. Mater. Sci., 2010, 45(12): 3259

DOI

20
Y. Z. Li , M. Y. Sun , X. X. Yu , W. K. Liu , S. S. Kong , Y. L. Li , X. Y. Fang . First-principles study on optical properties of group-III doped SiCNRs. Mater. Today Commun., 2022, 32: 104179

DOI

21
Y. Z. Li , M. Y. Sun , X. X. Yu , W. K. Liu , S. S. Kong , Y. L. Li , X. Y. Fang . Theoretical study on transport properties of group-III doped SiCNRs. Eur. Phys. J. Plus, 2022, 137(9): 995

DOI

22
E. Bekaroglu , M. Topsakal , S. Cahangirov , S. Ciraci . First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B, 2010, 81(7): 075433

DOI

23
H. L. Zhu , Z. F. Hong , C. J. Zhou , Q. H. Wu , T. C. Zheng , L. Yang , S. Q. Lan , W. F. Yang . Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions. Front. Phys., 2023, 18(1): 13301

DOI

24
S. S. Lin . Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C, 2012, 116(6): 3951

DOI

25
L.SunB.WangY.Wang, A novel silicon carbide nanosheet for high-performance humidity sensor, Adv. Mater. Interfaces 5(6), 1701300 (2018)

26
M. Houmad , O. Dakir , A. Abbassi , A. Benyoussef , A. El Kenz , H. Ez-Zahraouy . Optical properties of SiC nanosheet. Optik (Stuttg.), 2016, 127(4): 1867

DOI

27
X.LinS.LinY.XuA.A. HakroT.HasanB.ZhangB.YuJ.LuoE.LiH.Chen, Ab initio study of electronic and optical behavior of two-dimensional silicon carbide, J. Mater. Chem. C 1(11), 2131 (2013)

28
Q. Chen , Y. Jiang , Y. Wang , H. Li , C. Yu , J. Cui , Y. Qin , J. Sun , J. Yan , H. Zheng , D. Chen , J. Wu , Y. Zhang , Y. Wu . Enhanced supercapacitive performance of novel ultrathin sic nanosheets directly by liquid phase exfoliation. Inorg. Chem. Commun., 2019, 106(6): 174

DOI

29
L. Sun , B. Wang , Y. Wang . High-temperature gas sensor based on novel Pt single atoms@SnO2 nanorods@SiC nanosheets multi-heterojunctions. ACS Appl. Mater. Interfaces, 2020, 12(19): 21808

DOI

30
W. K. Liu , S. S. Kong , X. X. Yu , Y. L. Li , L. Z. Yang , Y. Ma , X. Y. Fang . Interlayer coupling, electronic and optical properties of few-layer silicon carbide nanosheets. Mater. Today Commun., 2023, 34: 105030

DOI

31
P. N. Nirmalraj , T. Lutz , S. Kumar , G. S. Duesberg , J. J. Boland . Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett., 2011, 11(1): 16

DOI

32
X. Y. Fang , X. X. Yu , H. M. Zheng , H. B. Jin , L. Wang , M. S. Cao . Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Phys. Lett. A, 2015, 379(37): 2245

DOI

33
J. Song , H. Liu , D. J. Henry . Layer effects on electronic structures of multi-walled armchair silicon carbide nanotubes. Comput. Mater. Sci., 2016, 125: 117

DOI

34
H. Cheng , J. C. Zheng . Ab initio study of anisotropic mechanical and electronic properties of strained carbon−nitride nanosheet with interlayer bonding. Front. Phys., 2021, 16(4): 43505

DOI

35
P. Gong , Y. Z. Li , M. Y. Sun , X. Y. Fang , X. L. Jing , M. S. Cao . Effect of inter-wall coupling on the electronic structure and optical properties of group-III doped SiCNTs. Physica B, 2021, 620(4): 413276

DOI

36
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865

DOI

37
A. Tkatchenko , M. Scheffler . Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett., 2009, 102(7): 073005

DOI

38
Y. Z. Li , M. Y. Sun , X. X. Yu , W. K. Liu , S. S. Kong , P. Gong , X. Y. Fang . Comparative study on the optical properties of group-V doped SiC nanoribbons. Mater. Sci. Eng. B, 2022, 284: 115896

DOI

39
M. Y. Sun , Y. Z. Li , X. X. Yu , W. K. Liu , S. S. Kong , P. Gong , X. Y. Fang . Comparative study on transport and optical properties of silicon carbide nanoribbons with different terminations. Eur. Phys. J. B, 2022, 95(9): 142

DOI

40
S. Kitipornchai , X. Q. He , K. M. Liew . Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B, 2005, 72(7): 075443

DOI

41
G. Mie . Zur kinetischen theorie der einatomigen Körper. Ann. Phys., 1903, 316(8): 657

DOI

42
A. N. Kolmogorov , V. H. Crespi . Smoothest bearings: Interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett., 2000, 85(22): 4727

DOI

43
P. Lou , J. Y. Lee . Electrical control of magnetization in narrow zigzag silicon carbon nanoribbons. J. Phys. Chem. C, 2009, 113(50): 21213

DOI

44
A. N. Kolmogorov , V. H. Crespi . Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B, 2005, 71(23): 235415

DOI

45
D. L. Wood , J. S. Tauc . Weak absorption tails in amorphous semiconductors. Phys. Rev. B, 1972, 5(8): 3144

DOI

46
T. Kamiya , S. Aiba , M. Miyakawa , K. Nomura , S. Matsuishi , K. Hayashi , K. Ueda , M. Hirano , H. Hosono . Field-induced current modulation in nanoporous semiconductor, electron-doped 12CaO∙7Al2O3. Chem. Mater., 2005, 17(25): 6311

DOI

47
W. D. Ma , W. K. Liu , P. Gong , Y. H. Jia , Y. Y. Yang , X. Y. Fang . Effects of different valence atoms on surface passivation of silicon carbide nanowires. Int. J. Mod. Phys. B, 2021, 35(20): 2150207

DOI

Outlines

/