RESEARCH ARTICLE

Spinning microresonator-induced chiral optical transmission

  • Lu Bo 1 ,
  • Xiao-Fei Liu , 1 ,
  • Chuan Wang 2 ,
  • Tie-Jun Wang , 1
Expand
  • 1. State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2. School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China

Received date: 10 Jun 2022

Accepted date: 12 Oct 2022

Published date: 15 Feb 2023

Copyright

2023 Higher Education Press

Abstract

Chiral quantum optics is a new research area in light-matter interaction that depends on the direction of light propagation and offers a new path for the quantum regulation of light-matter interactions. In this paper, we study a spinning Kerr-type microresonator coupled with Λ-type atom ensembles, which are driven in opposite directions to generate asymmetric photon statistics. We find that a photon blockade can only be generated by driving the spinning resonator on right side without driving the spinning microresonator from the left side, resulting in chirality. The coupling strength between system modes can be precisely controlled by adjusting the detuning amount of the atomic pump field. Because of the splitting of the resonant frequency generated by the Fizeau drag, the destructive quantum interference generated in right side drive prevents the nonresonant transition path of state |1,0⟩ to state |2,0⟩. This direction-dependent chiral quantum optics is expected to be applied to chiral optical devices, single-photon sources and nonreciprocal quantum communications.

Cite this article

Lu Bo , Xiao-Fei Liu , Chuan Wang , Tie-Jun Wang . Spinning microresonator-induced chiral optical transmission[J]. Frontiers of Physics, 2023 , 18(1) : 12305 . DOI: 10.1007/s11467-022-1212-z

Acknowledgements

We would like to thank the support from the National Natural Science Foundation of China under Grant Nos. 62071064 and 62131002, the Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A02, and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (No. IPOC2022ZT10), China.
1
D. R. Yennie. Integral quantum Hall effect for nonspecialists. Rev. Mod. Phys., 1987, 59(3): 781

DOI

2
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, S. C. Zhang. Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766

DOI

3
Y. X. Zhao. Equivariant PT-symmetric real Chern insulators. Front. Phys., 2020, 15(1): 13603

DOI

4
I. Serban, B. Béri, A. R. Akhmerov, C. W. J. Beenakker. Domain wall in a chiral p-wave superconductor: A pathway for electrical current. Phys. Rev. Lett., 2010, 104(14): 147001

DOI

5
C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 2013, 110(21): 213604

DOI

6
I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, B. Dayan. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 2014, 345(6199): 903

DOI

7
R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun., 2014, 5(1): 5713

DOI

8
X. F. Liu, T. J. Wang, Y. P. Gao, C. Cao, C. Wang. Chiral microresonator assisted by Rydberg-atom ensembles. Phys. Rev. A, 2018, 98(3): 033824

DOI

9
I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett., 2013, 110(3): 037402

DOI

10
D. Holzmann, M. Sonnleitner, H. Ritsch. Self-ordering and collective dynamics of transversely illuminated pointscatterers in a 1D trap. Eur. Phys. J. D, 2014, 68(11): 352

DOI

11
Q. W. Shi, Z. F. Wang, Q. X. Li, J. L. Yang. Chiral selective tunneling induced graphene nanoribbon switch. Front. Phys. China, 2009, 4(3): 373

DOI

12
P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 2017, 541(7638): 473

DOI

13
H. J. Kimble. Strong interactions of single atoms and photons in cavity QED. Phys. Scr., 1998, T76(1): 127

DOI

14
X. W. Xu, H. Q. Shi, A. X. Chen. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys., 2022, 17(4): 42505

DOI

15
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, A. V. Zayats. Spin–orbit interactions of light. Nat. Photonics, 2015, 9(12): 796

DOI

16
A. Aiello, P. Banzer, M. Neugebauer, G. Leuchs. From transverse angular momentum to photonic wheels. Nat. Photonics, 2015, 9(12): 789

DOI

17
K. Y. Bliokh, F. Nori. Transverse and longitudinal angular momenta of light. Phys. Rep., 2015, 592: 1

DOI

18
Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901

DOI

19
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 2014, 8(7): 524

DOI

20
Y. Y. Fu, Y. D. Xu, H. Y. Chen. Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13(4): 134206

DOI

21
A. Imamoḡlu, H. Schmidt, G. Woods, M. Deutsch. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett., 1997, 79(8): 1467

DOI

22
J. Q. Liao, C. Law. Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A, 2010, 82(5): 053836

DOI

23
A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, F. Nori. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A, 2013, 87(2): 023809

DOI

24
Y. P. Gao, X. F. Liu, T. J. Wang, C. Cao, C. Wang. Photon excitation and photon-blockade effects in optomagnonic microcavities. Phys. Rev. A, 2019, 100(4): 043831

DOI

25
W. L. Xu, Y. P. Gao, T. J. Wang, C. Wang. Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system. Opt. Express, 2020, 28(15): 22334

DOI

26
K. Wang, Y. P. Gao, R. Jiao, C. Wang. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201

DOI

27
Y. P. Gao, C. Wang. Hybrid coupling optomechanical assisted nonreciprocal photon blockade. Opt. Express, 2021, 29(16): 25161

DOI

28
P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601

DOI

29
A. Nunnenkamp, K. Børkje, S. M. Girvin. Singlephoton optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602

DOI

30
X. B. Yan, H. L. Lu, F. Gao, F. Gao, L. Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601

DOI

31
D. Armani, T. Kippenberg, S. Spillane, K. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925

DOI

32
B.DayanA. S. ParkinsT.AokiE.P. OstbyK.J. VahalaH.J. Kimble, A photon turnstile dynamically regulated by one atom, Science 319(5866), 1062 (2008)

33
V. Braginsky, M. Gorodetsky, V. Ilchenko. Quality factor and nonlinear properties of optical whispering gallery modes. Phys. Lett. A, 1989, 137(7-8): 393

DOI

34
T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12(20): 4742

DOI

35
K. Totsuka, M. Tomita. Optical microsphere amplification system. Opt. Lett., 2007, 32(21): 3197

DOI

36
Y. S. Park, H. Wang. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nat. Phys., 2009, 5(7): 489

DOI

37
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 2010, 330(6010): 1520

DOI

38
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, K. J. Vahala. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett., 2005, 94(22): 223902

DOI

39
F. Monifi, J. Zhang, K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, L. Yang. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photonics, 2016, 10(6): 399

DOI

40
Y.P. GaoC. CaoP.F. LuC.Wang, Phase-controlled photon blockade in optomechanical systems, Fundamental Research (2022) (in press)

41
Y. W. Hu, Y. F. Xiao, Y. C. Liu, Q. Gong. Optomechanical sensing with on-chip microcavities. Front. Phys., 2013, 8(5): 475

DOI

42
T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555

DOI

43
F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, L. Yang. Lithium-niobate–silica hybrid whispering-gallery-mode resonators. Adv. Mater., 2015, 27(48): 8075

DOI

44
Q. T. Cao, H. Wang, C. H. Dong, H. Jing, R. S. Liu, X. Chen, L. Ge, Q. Gong, Y. F. Xiao. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 2017, 118(3): 033901

DOI

45
B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10(5): 394

DOI

46
L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346(6212): 972

DOI

47
H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time-symmetric microring lasers. Science, 2014, 346(6212): 975

DOI

48
S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, H. J. Kimble. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A, 2005, 71(1): 013817

DOI

49
H. Wang. Multi-peak solitons in PT-symmetric Bessel optical lattices with defects. Front. Phys., 2016, 11(5): 114204

DOI

50
J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2010, 30(2): 4,46

51
Y. Zhi, X. C. Yu, Q. Gong, L. Yang, Y. F. Xiao. Single nanoparticle detection using optical microcavities. Adv. Mater., 2017, 29(12): 1604920

DOI

52
T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, A. François. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev., 2017, 11(2): 1600265

DOI

53
L. X. Zhang, R. Zhang, Z. Q. Li. Study on a vapor sensor based on the optical properties of porous silicon microcavities. Front. Phys. China, 2007, 2(2): 166

DOI

54
S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, T. Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature, 2018, 558(7711): 569

DOI

55
R. Huang, A. Miranowicz, J. Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 2018, 121(15): 153601

DOI

56
Y. Jiang, S. Maayani, T. Carmon, F. Nori, H. Jing. Nonreciprocal phonon laser. Phys. Rev. Appl., 2018, 10(6): 064037

DOI

57
H. Jing, H. Lü, S. Özdemir, T. Carmon, F. Nori. Nanoparticle sensing with a spinning resonator. Optica, 2018, 5(11): 1424

DOI

58
B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 2019, 7(6): 630

DOI

59
G. B. Malykin. The Sagnac effect: Correct and incorrect explanations. Phys. Uspekhi, 2000, 43(12): 1229

DOI

60
T. C. H. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 2010, 104(18): 183601

DOI

61
M. Bamba, A. Imamoğlu, I. Carusotto, C. Ciuti. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 2011, 83(2): 021802

DOI

Outlines

/