Spinning microresonator-induced chiral optical transmission
Lu Bo, Xiao-Fei Liu, Chuan Wang, Tie-Jun Wang
Spinning microresonator-induced chiral optical transmission
Chiral quantum optics is a new research area in light-matter interaction that depends on the direction of light propagation and offers a new path for the quantum regulation of light-matter interactions. In this paper, we study a spinning Kerr-type microresonator coupled with Λ-type atom ensembles, which are driven in opposite directions to generate asymmetric photon statistics. We find that a photon blockade can only be generated by driving the spinning resonator on right side without driving the spinning microresonator from the left side, resulting in chirality. The coupling strength between system modes can be precisely controlled by adjusting the detuning amount of the atomic pump field. Because of the splitting of the resonant frequency generated by the Fizeau drag, the destructive quantum interference generated in right side drive prevents the nonresonant transition path of state |1,0⟩ to state |2,0⟩. This direction-dependent chiral quantum optics is expected to be applied to chiral optical devices, single-photon sources and nonreciprocal quantum communications.
chiral quantum optics / spinning microresonator / nonreciprocal / photon blockade
[1] |
D. R. Yennie. Integral quantum Hall effect for nonspecialists. Rev. Mod. Phys., 1987, 59(3): 781
CrossRef
ADS
Google scholar
|
[2] |
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, S. C. Zhang. Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766
CrossRef
ADS
Google scholar
|
[3] |
Y. X. Zhao. Equivariant PT-symmetric real Chern insulators. Front. Phys., 2020, 15(1): 13603
CrossRef
ADS
Google scholar
|
[4] |
I. Serban, B. Béri, A. R. Akhmerov, C. W. J. Beenakker. Domain wall in a chiral p-wave superconductor: A pathway for electrical current. Phys. Rev. Lett., 2010, 104(14): 147001
CrossRef
ADS
Google scholar
|
[5] |
C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 2013, 110(21): 213604
CrossRef
ADS
Google scholar
|
[6] |
I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, B. Dayan. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 2014, 345(6199): 903
CrossRef
ADS
Google scholar
|
[7] |
R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun., 2014, 5(1): 5713
CrossRef
ADS
Google scholar
|
[8] |
X. F. Liu, T. J. Wang, Y. P. Gao, C. Cao, C. Wang. Chiral microresonator assisted by Rydberg-atom ensembles. Phys. Rev. A, 2018, 98(3): 033824
CrossRef
ADS
Google scholar
|
[9] |
I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett., 2013, 110(3): 037402
CrossRef
ADS
Google scholar
|
[10] |
D. Holzmann, M. Sonnleitner, H. Ritsch. Self-ordering and collective dynamics of transversely illuminated pointscatterers in a 1D trap. Eur. Phys. J. D, 2014, 68(11): 352
CrossRef
ADS
Google scholar
|
[11] |
Q. W. Shi, Z. F. Wang, Q. X. Li, J. L. Yang. Chiral selective tunneling induced graphene nanoribbon switch. Front. Phys. China, 2009, 4(3): 373
CrossRef
ADS
Google scholar
|
[12] |
P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 2017, 541(7638): 473
CrossRef
ADS
Google scholar
|
[13] |
H. J. Kimble. Strong interactions of single atoms and photons in cavity QED. Phys. Scr., 1998, T76(1): 127
CrossRef
ADS
Google scholar
|
[14] |
X. W. Xu, H. Q. Shi, A. X. Chen. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys., 2022, 17(4): 42505
CrossRef
ADS
Google scholar
|
[15] |
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, A. V. Zayats. Spin–orbit interactions of light. Nat. Photonics, 2015, 9(12): 796
CrossRef
ADS
Google scholar
|
[16] |
A. Aiello, P. Banzer, M. Neugebauer, G. Leuchs. From transverse angular momentum to photonic wheels. Nat. Photonics, 2015, 9(12): 789
CrossRef
ADS
Google scholar
|
[17] |
K. Y. Bliokh, F. Nori. Transverse and longitudinal angular momenta of light. Phys. Rep., 2015, 592: 1
CrossRef
ADS
Google scholar
|
[18] |
Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
CrossRef
ADS
Google scholar
|
[19] |
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 2014, 8(7): 524
CrossRef
ADS
Google scholar
|
[20] |
Y. Y. Fu, Y. D. Xu, H. Y. Chen. Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13(4): 134206
CrossRef
ADS
Google scholar
|
[21] |
A. Imamoḡlu, H. Schmidt, G. Woods, M. Deutsch. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett., 1997, 79(8): 1467
CrossRef
ADS
Google scholar
|
[22] |
J. Q. Liao, C. Law. Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A, 2010, 82(5): 053836
CrossRef
ADS
Google scholar
|
[23] |
A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, F. Nori. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A, 2013, 87(2): 023809
CrossRef
ADS
Google scholar
|
[24] |
Y. P. Gao, X. F. Liu, T. J. Wang, C. Cao, C. Wang. Photon excitation and photon-blockade effects in optomagnonic microcavities. Phys. Rev. A, 2019, 100(4): 043831
CrossRef
ADS
Google scholar
|
[25] |
W. L. Xu, Y. P. Gao, T. J. Wang, C. Wang. Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system. Opt. Express, 2020, 28(15): 22334
CrossRef
ADS
Google scholar
|
[26] |
K. Wang, Y. P. Gao, R. Jiao, C. Wang. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201
CrossRef
ADS
Google scholar
|
[27] |
Y. P. Gao, C. Wang. Hybrid coupling optomechanical assisted nonreciprocal photon blockade. Opt. Express, 2021, 29(16): 25161
CrossRef
ADS
Google scholar
|
[28] |
P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
CrossRef
ADS
Google scholar
|
[29] |
A. Nunnenkamp, K. Børkje, S. M. Girvin. Singlephoton optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
CrossRef
ADS
Google scholar
|
[30] |
X. B. Yan, H. L. Lu, F. Gao, F. Gao, L. Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601
CrossRef
ADS
Google scholar
|
[31] |
D. Armani, T. Kippenberg, S. Spillane, K. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925
CrossRef
ADS
Google scholar
|
[32] |
B.DayanA. S. ParkinsT.AokiE.P. OstbyK.J. VahalaH.J. Kimble, A photon turnstile dynamically regulated by one atom, Science 319(5866), 1062 (2008)
|
[33] |
V. Braginsky, M. Gorodetsky, V. Ilchenko. Quality factor and nonlinear properties of optical whispering gallery modes. Phys. Lett. A, 1989, 137(7-8): 393
CrossRef
ADS
Google scholar
|
[34] |
T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12(20): 4742
CrossRef
ADS
Google scholar
|
[35] |
K. Totsuka, M. Tomita. Optical microsphere amplification system. Opt. Lett., 2007, 32(21): 3197
CrossRef
ADS
Google scholar
|
[36] |
Y. S. Park, H. Wang. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nat. Phys., 2009, 5(7): 489
CrossRef
ADS
Google scholar
|
[37] |
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 2010, 330(6010): 1520
CrossRef
ADS
Google scholar
|
[38] |
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, K. J. Vahala. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett., 2005, 94(22): 223902
CrossRef
ADS
Google scholar
|
[39] |
F. Monifi, J. Zhang, K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, L. Yang. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photonics, 2016, 10(6): 399
CrossRef
ADS
Google scholar
|
[40] |
Y.P. GaoC. CaoP.F. LuC.Wang, Phase-controlled photon blockade in optomechanical systems, Fundamental Research (2022) (in press)
|
[41] |
Y. W. Hu, Y. F. Xiao, Y. C. Liu, Q. Gong. Optomechanical sensing with on-chip microcavities. Front. Phys., 2013, 8(5): 475
CrossRef
ADS
Google scholar
|
[42] |
T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555
CrossRef
ADS
Google scholar
|
[43] |
F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, L. Yang. Lithium-niobate–silica hybrid whispering-gallery-mode resonators. Adv. Mater., 2015, 27(48): 8075
CrossRef
ADS
Google scholar
|
[44] |
Q. T. Cao, H. Wang, C. H. Dong, H. Jing, R. S. Liu, X. Chen, L. Ge, Q. Gong, Y. F. Xiao. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 2017, 118(3): 033901
CrossRef
ADS
Google scholar
|
[45] |
B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10(5): 394
CrossRef
ADS
Google scholar
|
[46] |
L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346(6212): 972
CrossRef
ADS
Google scholar
|
[47] |
H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time-symmetric microring lasers. Science, 2014, 346(6212): 975
CrossRef
ADS
Google scholar
|
[48] |
S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, H. J. Kimble. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A, 2005, 71(1): 013817
CrossRef
ADS
Google scholar
|
[49] |
H. Wang. Multi-peak solitons in PT-symmetric Bessel optical lattices with defects. Front. Phys., 2016, 11(5): 114204
CrossRef
ADS
Google scholar
|
[50] |
J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2010, 30(2): 4,46
|
[51] |
Y. Zhi, X. C. Yu, Q. Gong, L. Yang, Y. F. Xiao. Single nanoparticle detection using optical microcavities. Adv. Mater., 2017, 29(12): 1604920
CrossRef
ADS
Google scholar
|
[52] |
T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, A. François. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev., 2017, 11(2): 1600265
CrossRef
ADS
Google scholar
|
[53] |
L. X. Zhang, R. Zhang, Z. Q. Li. Study on a vapor sensor based on the optical properties of porous silicon microcavities. Front. Phys. China, 2007, 2(2): 166
CrossRef
ADS
Google scholar
|
[54] |
S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, T. Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature, 2018, 558(7711): 569
CrossRef
ADS
Google scholar
|
[55] |
R. Huang, A. Miranowicz, J. Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 2018, 121(15): 153601
CrossRef
ADS
Google scholar
|
[56] |
Y. Jiang, S. Maayani, T. Carmon, F. Nori, H. Jing. Nonreciprocal phonon laser. Phys. Rev. Appl., 2018, 10(6): 064037
CrossRef
ADS
Google scholar
|
[57] |
H. Jing, H. Lü, S. Özdemir, T. Carmon, F. Nori. Nanoparticle sensing with a spinning resonator. Optica, 2018, 5(11): 1424
CrossRef
ADS
Google scholar
|
[58] |
B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 2019, 7(6): 630
CrossRef
ADS
Google scholar
|
[59] |
G. B. Malykin. The Sagnac effect: Correct and incorrect explanations. Phys. Uspekhi, 2000, 43(12): 1229
CrossRef
ADS
Google scholar
|
[60] |
T. C. H. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 2010, 104(18): 183601
CrossRef
ADS
Google scholar
|
[61] |
M. Bamba, A. Imamoğlu, I. Carusotto, C. Ciuti. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 2011, 83(2): 021802
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |