Spinning microresonator-induced chiral optical transmission

Lu Bo, Xiao-Fei Liu, Chuan Wang, Tie-Jun Wang

PDF(9277 KB)
PDF(9277 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 12305. DOI: 10.1007/s11467-022-1212-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Spinning microresonator-induced chiral optical transmission

Author information +
History +

Abstract

Chiral quantum optics is a new research area in light-matter interaction that depends on the direction of light propagation and offers a new path for the quantum regulation of light-matter interactions. In this paper, we study a spinning Kerr-type microresonator coupled with Λ-type atom ensembles, which are driven in opposite directions to generate asymmetric photon statistics. We find that a photon blockade can only be generated by driving the spinning resonator on right side without driving the spinning microresonator from the left side, resulting in chirality. The coupling strength between system modes can be precisely controlled by adjusting the detuning amount of the atomic pump field. Because of the splitting of the resonant frequency generated by the Fizeau drag, the destructive quantum interference generated in right side drive prevents the nonresonant transition path of state |1,0⟩ to state |2,0⟩. This direction-dependent chiral quantum optics is expected to be applied to chiral optical devices, single-photon sources and nonreciprocal quantum communications.

Graphical abstract

Keywords

chiral quantum optics / spinning microresonator / nonreciprocal / photon blockade

Cite this article

Download citation ▾
Lu Bo, Xiao-Fei Liu, Chuan Wang, Tie-Jun Wang. Spinning microresonator-induced chiral optical transmission. Front. Phys., 2023, 18(1): 12305 https://doi.org/10.1007/s11467-022-1212-z

References

[1]
D. R. Yennie. Integral quantum Hall effect for nonspecialists. Rev. Mod. Phys., 1987, 59(3): 781
CrossRef ADS Google scholar
[2]
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, S. C. Zhang. Quantum spin Hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766
CrossRef ADS Google scholar
[3]
Y. X. Zhao. Equivariant PT-symmetric real Chern insulators. Front. Phys., 2020, 15(1): 13603
CrossRef ADS Google scholar
[4]
I. Serban, B. Béri, A. R. Akhmerov, C. W. J. Beenakker. Domain wall in a chiral p-wave superconductor: A pathway for electrical current. Phys. Rev. Lett., 2010, 104(14): 147001
CrossRef ADS Google scholar
[5]
C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 2013, 110(21): 213604
CrossRef ADS Google scholar
[6]
I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, B. Dayan. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science, 2014, 345(6199): 903
CrossRef ADS Google scholar
[7]
R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun., 2014, 5(1): 5713
CrossRef ADS Google scholar
[8]
X. F. Liu, T. J. Wang, Y. P. Gao, C. Cao, C. Wang. Chiral microresonator assisted by Rydberg-atom ensembles. Phys. Rev. A, 2018, 98(3): 033824
CrossRef ADS Google scholar
[9]
I. J. Luxmoore, N. A. Wasley, A. J. Ramsay, A. C. T. Thijssen, R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox, M. S. Skolnick. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett., 2013, 110(3): 037402
CrossRef ADS Google scholar
[10]
D. Holzmann, M. Sonnleitner, H. Ritsch. Self-ordering and collective dynamics of transversely illuminated pointscatterers in a 1D trap. Eur. Phys. J. D, 2014, 68(11): 352
CrossRef ADS Google scholar
[11]
Q. W. Shi, Z. F. Wang, Q. X. Li, J. L. Yang. Chiral selective tunneling induced graphene nanoribbon switch. Front. Phys. China, 2009, 4(3): 373
CrossRef ADS Google scholar
[12]
P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller. Chiral quantum optics. Nature, 2017, 541(7638): 473
CrossRef ADS Google scholar
[13]
H. J. Kimble. Strong interactions of single atoms and photons in cavity QED. Phys. Scr., 1998, T76(1): 127
CrossRef ADS Google scholar
[14]
X. W. Xu, H. Q. Shi, A. X. Chen. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys., 2022, 17(4): 42505
CrossRef ADS Google scholar
[15]
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, A. V. Zayats. Spin–orbit interactions of light. Nat. Photonics, 2015, 9(12): 796
CrossRef ADS Google scholar
[16]
A. Aiello, P. Banzer, M. Neugebauer, G. Leuchs. From transverse angular momentum to photonic wheels. Nat. Photonics, 2015, 9(12): 789
CrossRef ADS Google scholar
[17]
K. Y. Bliokh, F. Nori. Transverse and longitudinal angular momenta of light. Phys. Rep., 2015, 592: 1
CrossRef ADS Google scholar
[18]
Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
CrossRef ADS Google scholar
[19]
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photonics, 2014, 8(7): 524
CrossRef ADS Google scholar
[20]
Y. Y. Fu, Y. D. Xu, H. Y. Chen. Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13(4): 134206
CrossRef ADS Google scholar
[21]
A. Imamoḡlu, H. Schmidt, G. Woods, M. Deutsch. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett., 1997, 79(8): 1467
CrossRef ADS Google scholar
[22]
J. Q. Liao, C. Law. Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A, 2010, 82(5): 053836
CrossRef ADS Google scholar
[23]
A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, F. Nori. Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A, 2013, 87(2): 023809
CrossRef ADS Google scholar
[24]
Y. P. Gao, X. F. Liu, T. J. Wang, C. Cao, C. Wang. Photon excitation and photon-blockade effects in optomagnonic microcavities. Phys. Rev. A, 2019, 100(4): 043831
CrossRef ADS Google scholar
[25]
W. L. Xu, Y. P. Gao, T. J. Wang, C. Wang. Magnon-induced optical high-order sideband generation in hybrid atom-cavity optomagnonical system. Opt. Express, 2020, 28(15): 22334
CrossRef ADS Google scholar
[26]
K. Wang, Y. P. Gao, R. Jiao, C. Wang. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201
CrossRef ADS Google scholar
[27]
Y. P. Gao, C. Wang. Hybrid coupling optomechanical assisted nonreciprocal photon blockade. Opt. Express, 2021, 29(16): 25161
CrossRef ADS Google scholar
[28]
P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
CrossRef ADS Google scholar
[29]
A. Nunnenkamp, K. Børkje, S. M. Girvin. Singlephoton optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
CrossRef ADS Google scholar
[30]
X. B. Yan, H. L. Lu, F. Gao, F. Gao, L. Yang. Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601
CrossRef ADS Google scholar
[31]
D. Armani, T. Kippenberg, S. Spillane, K. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421(6926): 925
CrossRef ADS Google scholar
[32]
B.DayanA. S. ParkinsT.AokiE.P. OstbyK.J. VahalaH.J. Kimble, A photon turnstile dynamically regulated by one atom, Science 319(5866), 1062 (2008)
[33]
V. Braginsky, M. Gorodetsky, V. Ilchenko. Quality factor and nonlinear properties of optical whispering gallery modes. Phys. Lett. A, 1989, 137(7-8): 393
CrossRef ADS Google scholar
[34]
T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12(20): 4742
CrossRef ADS Google scholar
[35]
K. Totsuka, M. Tomita. Optical microsphere amplification system. Opt. Lett., 2007, 32(21): 3197
CrossRef ADS Google scholar
[36]
Y. S. Park, H. Wang. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nat. Phys., 2009, 5(7): 489
CrossRef ADS Google scholar
[37]
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 2010, 330(6010): 1520
CrossRef ADS Google scholar
[38]
T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, K. J. Vahala. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett., 2005, 94(22): 223902
CrossRef ADS Google scholar
[39]
F. Monifi, J. Zhang, K. Ozdemir, B. Peng, Y. Liu, F. Bo, F. Nori, L. Yang. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photonics, 2016, 10(6): 399
CrossRef ADS Google scholar
[40]
Y.P. GaoC. CaoP.F. LuC.Wang, Phase-controlled photon blockade in optomechanical systems, Fundamental Research (2022) (in press)
[41]
Y. W. Hu, Y. F. Xiao, Y. C. Liu, Q. Gong. Optomechanical sensing with on-chip microcavities. Front. Phys., 2013, 8(5): 475
CrossRef ADS Google scholar
[42]
T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332(6029): 555
CrossRef ADS Google scholar
[43]
F. Bo, J. Wang, J. Cui, S. K. Ozdemir, Y. Kong, G. Zhang, J. Xu, L. Yang. Lithium-niobate–silica hybrid whispering-gallery-mode resonators. Adv. Mater., 2015, 27(48): 8075
CrossRef ADS Google scholar
[44]
Q. T. Cao, H. Wang, C. H. Dong, H. Jing, R. S. Liu, X. Chen, L. Ge, Q. Gong, Y. F. Xiao. Experimental demonstration of spontaneous chirality in a nonlinear microresonator. Phys. Rev. Lett., 2017, 118(3): 033901
CrossRef ADS Google scholar
[45]
B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10(5): 394
CrossRef ADS Google scholar
[46]
L. Feng, Z. J. Wong, R. M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346(6212): 972
CrossRef ADS Google scholar
[47]
H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan. Parity-time-symmetric microring lasers. Science, 2014, 346(6212): 975
CrossRef ADS Google scholar
[48]
S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, H. J. Kimble. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A, 2005, 71(1): 013817
CrossRef ADS Google scholar
[49]
H. Wang. Multi-peak solitons in PT-symmetric Bessel optical lattices with defects. Front. Phys., 2016, 11(5): 114204
CrossRef ADS Google scholar
[50]
J. Zhu, S. K. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2010, 30(2): 4,46
[51]
Y. Zhi, X. C. Yu, Q. Gong, L. Yang, Y. F. Xiao. Single nanoparticle detection using optical microcavities. Adv. Mater., 2017, 29(12): 1604920
CrossRef ADS Google scholar
[52]
T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, A. François. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev., 2017, 11(2): 1600265
CrossRef ADS Google scholar
[53]
L. X. Zhang, R. Zhang, Z. Q. Li. Study on a vapor sensor based on the optical properties of porous silicon microcavities. Front. Phys. China, 2007, 2(2): 166
CrossRef ADS Google scholar
[54]
S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, T. Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature, 2018, 558(7711): 569
CrossRef ADS Google scholar
[55]
R. Huang, A. Miranowicz, J. Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 2018, 121(15): 153601
CrossRef ADS Google scholar
[56]
Y. Jiang, S. Maayani, T. Carmon, F. Nori, H. Jing. Nonreciprocal phonon laser. Phys. Rev. Appl., 2018, 10(6): 064037
CrossRef ADS Google scholar
[57]
H. Jing, H. Lü, S. Özdemir, T. Carmon, F. Nori. Nanoparticle sensing with a spinning resonator. Optica, 2018, 5(11): 1424
CrossRef ADS Google scholar
[58]
B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing. Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 2019, 7(6): 630
CrossRef ADS Google scholar
[59]
G. B. Malykin. The Sagnac effect: Correct and incorrect explanations. Phys. Uspekhi, 2000, 43(12): 1229
CrossRef ADS Google scholar
[60]
T. C. H. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 2010, 104(18): 183601
CrossRef ADS Google scholar
[61]
M. Bamba, A. Imamoğlu, I. Carusotto, C. Ciuti. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 2011, 83(2): 021802
CrossRef ADS Google scholar

Acknowledgements

We would like to thank the support from the National Natural Science Foundation of China under Grant Nos. 62071064 and 62131002, the Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A02, and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (No. IPOC2022ZT10), China.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(9277 KB)

Accesses

Citations

Detail

Sections
Recommended

/