RESEARCH ARTICLE

Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities

  • Ling-Juan Feng , 1 ,
  • Li Yan , 2 ,
  • Shang-Qing Gong , 3
Expand
  • 1. School of Sciences, Shanghai Institute of Technology, Shanghai 201418, China
  • 2. School of Physics and Electronic Engineering, Heze University, Heze 274015, China
  • 3. School of Physics, East China University of Science and Technology, Shanghai 200237, China

Received date: 16 Apr 2022

Accepted date: 12 Oct 2022

Published date: 15 Feb 2023

Copyright

2023 Higher Education Press

Abstract

We study the use of the self-Kerr and cross-Kerr nonlinearities to realize strong photon blockade in a weakly driven, four-mode optomechanical system. According to the Born−Oppenheimer approximation, we obtain the cavity self-Kerr coupling and the inter-cavity cross-Kerr coupling, adiabatically separated from the mechanical oscillator. Through minimizing the second-order correlation function, we find out the optimal parameter conditions for the unconventional photon blockade. Under the optimal conditions, the strong photon blockade can appear in the strong or weak nonlinearities.

Cite this article

Ling-Juan Feng , Li Yan , Shang-Qing Gong . Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities[J]. Frontiers of Physics, 2023 , 18(1) : 12304 . DOI: 10.1007/s11467-022-1213-y

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12034007 and 12204310), the Shanghai Sailing Program (Grant No. 21YF1446900), and the Research start-up project of Shanghai Institute of Technology (Grant No. YJ2021-65).
1
T. J. Kippenberg, K. J. Vahala. Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321(5893): 1172

DOI

2
M. Aspelmeyer, P. Meystre, K. Schwab. Quantum optomechanics. Phys. Today, 2012, 65(7): 29

DOI

3
M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391

DOI

4
P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601

DOI

5
A. Nunnenkamp, K. Børkje, S. M. Girvin. Single-photon optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602

DOI

6
G. Li, T. Wang, H. S. Song. Amplification effects in optomechanics via weak measurements. Phys. Rev. A, 2014, 90(1): 013827

DOI

7
Z. Y. Wang, A. H. Safavi-Naeini. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback. Nat. Commun., 2017, 8(1): 15886

DOI

8
C. Genes, A. Xuereb, G. Pupillo, A. Dantan. Enhanced optomechanical readout using optical coalescence. Phys. Rev. A, 2013, 88(3): 033855

DOI

9
T. T. Heikkilä, F. Massel, J. Tuorila, R. Khan, M. A. Sillanpää. Enhancing optomechanical coupling via the Josephson effect. Phys. Rev. Lett., 2014, 112(20): 203603

DOI

10
J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, M. A. Sillanpää. Cavity optomechanics mediated by a quantum two-level system. Nat. Commun., 2015, 6(1): 6981

DOI

11
D. Bothner, I. C. Rodrigues, G. A. Steele. Photon-pressure strong coupling between two superconducting circuits. Nat. Phys., 2021, 17(1): 85

DOI

12
X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, F. Nori. Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett., 2015, 114(9): 093602

DOI

13
M. A. Lemonde, N. Didier, A. A. Clerk. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification. Nat. Commun., 2016, 7(1): 11338

DOI

14
T. S. Yin, X. Y. Lü, L. L. Zheng, M. Wang, S. Li, Y. Wu. Nonlinear effects in modulated quantum optomechanics. Phys. Rev. A, 2017, 95(5): 053861

DOI

15
L. J. Feng, S. Q. Gong. Two-photon blockade generated and enhanced by mechanical squeezing. Phys. Rev. A, 2021, 103(4): 043509

DOI

16
D. L. Chen, Y. H. Chen, Y. Liu, Z. C. Shi, J. Song, Y. Xia. Detecting a single atom in a cavity using the χ(2) nonlinear medium. Front. Phys., 2022, 17(5): 52501

DOI

17
T. C. H. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 2010, 104(18): 183601

DOI

18
M. Bamba, A. Imamoğlu, I. Carusotto, C. Ciuti. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 2011, 83(2): 021802(R)

DOI

19
C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, J. Estéve. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett., 2018, 121(4): 043602

DOI

20
H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, W. Löffler. Observation of the unconventional photon blockade. Phys. Rev. Lett., 2018, 121(4): 043601

DOI

21
X. W. Xu, Y. J. Li. Antibunching photons in a cavity coupled to an optomechanical system. J. Phys. At. Mol. Opt. Phys., 2013, 46(3): 035502

DOI

22
B. Sarma, A. K. Sarma. Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A, 2018, 98(1): 013826

DOI

23
D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, H. F. Wang. Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys., 2020, 22(9): 093006

DOI

24
F. Zou, L. B. Fan, J. F. Huang, J. Q. Liao. Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Phys. Rev. A, 2019, 99(4): 043837

DOI

25
J. Q. Liao, J. F. Huang, L. Tian, L. M. Kuang, C. P. Sun. Generalized ultrastrong optomechanical-like coupling. Phys. Rev. A, 2020, 101(6): 063802

DOI

26
Y. M. Wang, G. Q. Zhang, W. L. You. Photon blockade with cross-Kerr nonlinearity in superconducting circuits. Laser Phys. Lett., 2018, 15(10): 105201

DOI

27
J. Y. Yang, Z. Yang, C. S. Zhao, R. Peng, S. L. Chao, L. Zhou. Nonlinearity enhancement and photon blockade in hybrid optomechanical systems. Opt. Express, 2021, 29(22): 36167

DOI

28
Y. B. Qian, D. G. Lai, M. R. Chen, B. P. Hou. Nonreciprocal photon transmission with quantum noise reduction via cross-Kerr nonlinearity. Phys. Rev. A, 2021, 104(3): 033705

DOI

29
Z. R. Gong, H. Ian, Y. X. Liu, C. P. Sun, F. Nori. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system. Phys. Rev. A, 2009, 80(6): 065801

DOI

30
N. Imoto, H. A. Haus, Y. Yamamoto. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A, 1985, 32(4): 2287

DOI

31
D.F. WallsG. J. Milburn, Quantum Optics, Springer-Verlag, Berlin, 1994

32
C. K. Law. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A, 1995, 51(3): 2537

DOI

33
F. Ruesink, M. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 2016, 7(1): 13662

DOI

34
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, T. J. Kippenberg. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 2017, 8(1): 604

DOI

35
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Optomechanical crystals. Nature, 2009, 462(7269): 78

DOI

36
A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, T. J. Kippenberg. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys., 2008, 4: 415

DOI

37
S. Gupta, K. L. Moore, K. W. Murch, D. M. Stamper-Kurn. Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett., 2007, 99(21): 213601

DOI

38
F. Brennecke, S. Ritter, T. Donner, T. Esslinger. Cavity optomechanics with a Bose−Einstein condensate. Science, 2008, 322(5899): 235

DOI

39
B. Sarma, A. K. Sarma. Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A, 2017, 96(5): 053827

DOI

Outlines

/