Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities
Ling-Juan Feng, Li Yan, Shang-Qing Gong
Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities
We study the use of the self-Kerr and cross-Kerr nonlinearities to realize strong photon blockade in a weakly driven, four-mode optomechanical system. According to the Born−Oppenheimer approximation, we obtain the cavity self-Kerr coupling and the inter-cavity cross-Kerr coupling, adiabatically separated from the mechanical oscillator. Through minimizing the second-order correlation function, we find out the optimal parameter conditions for the unconventional photon blockade. Under the optimal conditions, the strong photon blockade can appear in the strong or weak nonlinearities.
unconventional photon blockade / cross-Kerr nonlinearity / self-Kerr nonlinearity / optomechanical system
[1] |
T. J. Kippenberg, K. J. Vahala. Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321(5893): 1172
CrossRef
ADS
Google scholar
|
[2] |
M. Aspelmeyer, P. Meystre, K. Schwab. Quantum optomechanics. Phys. Today, 2012, 65(7): 29
CrossRef
ADS
Google scholar
|
[3] |
M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
CrossRef
ADS
Google scholar
|
[4] |
P. Rabl. Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
CrossRef
ADS
Google scholar
|
[5] |
A. Nunnenkamp, K. Børkje, S. M. Girvin. Single-photon optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
CrossRef
ADS
Google scholar
|
[6] |
G. Li, T. Wang, H. S. Song. Amplification effects in optomechanics via weak measurements. Phys. Rev. A, 2014, 90(1): 013827
CrossRef
ADS
Google scholar
|
[7] |
Z. Y. Wang, A. H. Safavi-Naeini. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback. Nat. Commun., 2017, 8(1): 15886
CrossRef
ADS
Google scholar
|
[8] |
C. Genes, A. Xuereb, G. Pupillo, A. Dantan. Enhanced optomechanical readout using optical coalescence. Phys. Rev. A, 2013, 88(3): 033855
CrossRef
ADS
Google scholar
|
[9] |
T. T. Heikkilä, F. Massel, J. Tuorila, R. Khan, M. A. Sillanpää. Enhancing optomechanical coupling via the Josephson effect. Phys. Rev. Lett., 2014, 112(20): 203603
CrossRef
ADS
Google scholar
|
[10] |
J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, M. A. Sillanpää. Cavity optomechanics mediated by a quantum two-level system. Nat. Commun., 2015, 6(1): 6981
CrossRef
ADS
Google scholar
|
[11] |
D. Bothner, I. C. Rodrigues, G. A. Steele. Photon-pressure strong coupling between two superconducting circuits. Nat. Phys., 2021, 17(1): 85
CrossRef
ADS
Google scholar
|
[12] |
X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, F. Nori. Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett., 2015, 114(9): 093602
CrossRef
ADS
Google scholar
|
[13] |
M. A. Lemonde, N. Didier, A. A. Clerk. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification. Nat. Commun., 2016, 7(1): 11338
CrossRef
ADS
Google scholar
|
[14] |
T. S. Yin, X. Y. Lü, L. L. Zheng, M. Wang, S. Li, Y. Wu. Nonlinear effects in modulated quantum optomechanics. Phys. Rev. A, 2017, 95(5): 053861
CrossRef
ADS
Google scholar
|
[15] |
L. J. Feng, S. Q. Gong. Two-photon blockade generated and enhanced by mechanical squeezing. Phys. Rev. A, 2021, 103(4): 043509
CrossRef
ADS
Google scholar
|
[16] |
D. L. Chen, Y. H. Chen, Y. Liu, Z. C. Shi, J. Song, Y. Xia. Detecting a single atom in a cavity using the χ(2) nonlinear medium. Front. Phys., 2022, 17(5): 52501
CrossRef
ADS
Google scholar
|
[17] |
T. C. H. Liew, V. Savona. Single photons from coupled quantum modes. Phys. Rev. Lett., 2010, 104(18): 183601
CrossRef
ADS
Google scholar
|
[18] |
M. Bamba, A. Imamoğlu, I. Carusotto, C. Ciuti. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A, 2011, 83(2): 021802(R)
CrossRef
ADS
Google scholar
|
[19] |
C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, J. Estéve. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett., 2018, 121(4): 043602
CrossRef
ADS
Google scholar
|
[20] |
H. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. van Exter, D. Bouwmeester, W. Löffler. Observation of the unconventional photon blockade. Phys. Rev. Lett., 2018, 121(4): 043601
CrossRef
ADS
Google scholar
|
[21] |
X. W. Xu, Y. J. Li. Antibunching photons in a cavity coupled to an optomechanical system. J. Phys. At. Mol. Opt. Phys., 2013, 46(3): 035502
CrossRef
ADS
Google scholar
|
[22] |
B. Sarma, A. K. Sarma. Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A, 2018, 98(1): 013826
CrossRef
ADS
Google scholar
|
[23] |
D. Y. Wang, C. H. Bai, S. T. Liu, S. Zhang, H. F. Wang. Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys., 2020, 22(9): 093006
CrossRef
ADS
Google scholar
|
[24] |
F. Zou, L. B. Fan, J. F. Huang, J. Q. Liao. Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Phys. Rev. A, 2019, 99(4): 043837
CrossRef
ADS
Google scholar
|
[25] |
J. Q. Liao, J. F. Huang, L. Tian, L. M. Kuang, C. P. Sun. Generalized ultrastrong optomechanical-like coupling. Phys. Rev. A, 2020, 101(6): 063802
CrossRef
ADS
Google scholar
|
[26] |
Y. M. Wang, G. Q. Zhang, W. L. You. Photon blockade with cross-Kerr nonlinearity in superconducting circuits. Laser Phys. Lett., 2018, 15(10): 105201
CrossRef
ADS
Google scholar
|
[27] |
J. Y. Yang, Z. Yang, C. S. Zhao, R. Peng, S. L. Chao, L. Zhou. Nonlinearity enhancement and photon blockade in hybrid optomechanical systems. Opt. Express, 2021, 29(22): 36167
CrossRef
ADS
Google scholar
|
[28] |
Y. B. Qian, D. G. Lai, M. R. Chen, B. P. Hou. Nonreciprocal photon transmission with quantum noise reduction via cross-Kerr nonlinearity. Phys. Rev. A, 2021, 104(3): 033705
CrossRef
ADS
Google scholar
|
[29] |
Z. R. Gong, H. Ian, Y. X. Liu, C. P. Sun, F. Nori. Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system. Phys. Rev. A, 2009, 80(6): 065801
CrossRef
ADS
Google scholar
|
[30] |
N. Imoto, H. A. Haus, Y. Yamamoto. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A, 1985, 32(4): 2287
CrossRef
ADS
Google scholar
|
[31] |
D.F. WallsG. J. Milburn, Quantum Optics, Springer-Verlag, Berlin, 1994
|
[32] |
C. K. Law. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A, 1995, 51(3): 2537
CrossRef
ADS
Google scholar
|
[33] |
F. Ruesink, M. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 2016, 7(1): 13662
CrossRef
ADS
Google scholar
|
[34] |
N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, T. J. Kippenberg. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 2017, 8(1): 604
CrossRef
ADS
Google scholar
|
[35] |
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Optomechanical crystals. Nature, 2009, 462(7269): 78
CrossRef
ADS
Google scholar
|
[36] |
A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, T. J. Kippenberg. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys., 2008, 4: 415
CrossRef
ADS
Google scholar
|
[37] |
S. Gupta, K. L. Moore, K. W. Murch, D. M. Stamper-Kurn. Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett., 2007, 99(21): 213601
CrossRef
ADS
Google scholar
|
[38] |
F. Brennecke, S. Ritter, T. Donner, T. Esslinger. Cavity optomechanics with a Bose−Einstein condensate. Science, 2008, 322(5899): 235
CrossRef
ADS
Google scholar
|
[39] |
B. Sarma, A. K. Sarma. Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A, 2017, 96(5): 053827
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |