RESEARCH ARTICLE

Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect

  • Cui Kong 1 ,
  • Jibing Liu , 1 ,
  • Hao Xiong , 2
Expand
  • 1. College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China
  • 2. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 10 May 2022

Accepted date: 18 Aug 2022

Published date: 15 Feb 2023

Copyright

2023 Higher Education Press

Abstract

Nonreciprocal microwave devices, in which the transmission of waves is non-symmetric between two ports, are indispensable for the manipulation of information processing and communication. In this work, we show the nonreciprocal microwave transmission in a cavity magnonic system under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect. In contrast to the schemes based on the standard phase modulation or magnon Kerr nonlinearity, we find that the joint mechanism enables the nonreciprocal transmission even at low power and makes us obtain a high nonreciprocal isolation ratio. Moreover, when two microwave modes are coupled to the magnon mode via a different coupling strength, the presented strong nonreciprocal response occurs, and it makes the nonreciprocal transmission manipulating by the magnetic field within a large adjustable range possible, which overcomes narrow operating bandwidths. This study may provide promising opportunities to realize nonreciprocal structures for wave transmission.

Cite this article

Cui Kong , Jibing Liu , Hao Xiong . Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect[J]. Frontiers of Physics, 2023 , 18(1) : 12501 . DOI: 10.1007/s11467-022-1203-0

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 12105092 and 12022507) and Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institution of Hubei Province (No. T2020014).
1
H. Walther , B. T. H. Varcoe , B. G. Englert , T. Becker . Cavity quantum electrodynamics. Rep. Prog. Phys., 2006, 69(5): 1325

DOI

2
Q. P. Su , Y. Zhang , L. Bin , C. P. Yang . Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505

DOI

3
D.D. StancilA.Prabhakar, Spin Waves, Springer, New York, 2009

4
Ö. O. Soykal , M. E. Flatté . Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett., 2010, 104(7): 077202

DOI

5
B. Zare Rameshti , Y. Cao , G. E. W. Bauer . Magnetic spheres in microwave cavities. Phys. Rev. B, 2015, 91(21): 214430

DOI

6
Y. Tabuchi , S. Ishino , A. Noguchi , T. Ishikawa , R. Yamazaki , K. Usami , Y. Nakamura . Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 2015, 349(6246): 405

DOI

7
J. Shim , S. J. Kim , S. K. Kim , K. J. Lee . Enhanced magnon−photon coupling at the angular momentum compensation point of ferrimagnets. Phys. Rev. Lett., 2020, 125(2): 027205

DOI

8
K. Wang , Y. P. Gao , R. Z. Jiao , C. Wang . Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201

DOI

9
H. J. Kimble . The quantum internet. Nature, 2008, 453(7198): 1023

DOI

10
M. Aspelmeyer , T. J. Kippenberg , F. Marquardt . Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391

DOI

11
J. W. Zhou , P. F. Wang , F. Z. Shi , P. Huang , X. Kong , X. K. Xu , Q. Zhang , Z. X. Wang , X. Rong , J. F. Du . Quantum information processing and metrology with color centers in diamonds. Front. Phys., 2014, 9(5): 587

DOI

12
X. Zhang , C. L. Zou , L. Jiang , H. X. Tang . Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett., 2014, 113(15): 156401

DOI

13
M. Goryachev , W. G. Farr , D. L. Creedon , Y. Fan , M. Kostylev , M. E. Tobar . High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl., 2014, 2(5): 054002

DOI

14
D. Zhang , X.-M. Wang , T.-F. Li , X.-Q. Luo , W. Wu , F. Nori , J. Q. You . Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quantum Inf., 2015, 1: 15014

DOI

15
B. Yao , Y. Gui , J. Rao , S. Kaur , X. Chen , W. Lu , Y. Xiao , H. Guo , K. P. Marzlin , C. M. Hu . Cooperative polariton dynamics in feedback-coupled cavities. Nat. Commun., 2017, 8(1): 1437

DOI

16
Y. Tabuchi , S. Ishino , T. Ishikawa , R. Yamazaki , K. Usami , Y. Nakamura . Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett., 2014, 113(8): 083603

DOI

17
N. Kostylev , M. Goryachev , M. E. Tobar . Superstrong coupling of a microwave cavity to yttrium iron garnet magnons. Appl. Phys. Lett., 2016, 108(6): 062402

DOI

18
J. Bourhill , N. Kostylev , M. Goryachev , D. Creedon , M. Tobar . Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere. Phys. Rev. B, 2016, 93(14): 144420

DOI

19
G. Flower , M. Goryachev , J. Bourhill , M. E. Tobar . Experimental implementations of cavity-magnon systems: From ultra strong coupling to applications in precision measurement. New J. Phys., 2019, 21(9): 095004

DOI

20
L. Bai , M. Harder , Y. P. Chen , X. Fan , J. Q. Xiao , C. M. Hu . Spin pumping in electrodynamically coupled magnon−photon systems. Phys. Rev. Lett., 2015, 114(22): 227201

DOI

21
Y. P. Wang , G. Q. Zhang , D. Zhang , T. F. Li , C. M. Hu , J. Q. You . Bistability of cavity magnon polaritons. Phys. Rev. Lett., 2018, 120(5): 057202

DOI

22
X. F. Zhang , C. L. Zou , N. Zhu , F. Marquardt , L. Jiang , H. X. Tang . Magnon dark modes and gradient memory. Nat. Commun., 2015, 6(1): 8914

DOI

23
R. C. Shen , Y. P. Wang , J. Li , S. Y. Zhu , G. S. Agarwal , J. Q. You . Long-time memory and ternary logic gate using a multistable cavity magnonic system. Phys. Rev. Lett., 2021, 127(18): 183202

DOI

24
Y. P. Wang , C. M. Hu . Dissipative couplings in cavity magnonics. J. Appl. Phys., 2020, 127(13): 130901

DOI

25
M. Harder , Y. Yang , B. M. Yao , C. H. Yu , J. W. Rao , Y. S. Gui , R. L. Stamps , C. M. Hu . Level attraction due to dissipative magnon−photon coupling. Phys. Rev. Lett., 2018, 121(13): 137203

DOI

26
J. W. Rao , C. H. Yu , Y. T. Zhao , Y. S. Gui , X. Fan , D. Xue , C. M. Hu . Level attraction and level repulsion of magnon coupled with a cavity anti-resonance. New J. Phys., 2019, 21(6): 065001

DOI

27
Y. Cao , P. Yan , H. Huebl , S. T. B. Goennenwein , G. E. W. Bauer . Exchange magnon-polaritons in microwave cavities. Phys. Rev. B, 2015, 91(9): 094423

DOI

28
L. Bai , M. Harder , P. Hyde , Z. Zhang , C. M. Hu , Y. P. Chen , J. Q. Xiao . Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton. Phys. Rev. Lett., 2017, 118(21): 217201

DOI

29
D. Zhang , X. Q. Luo , Y. P. Wang , T. F. Li , J. Q. You . Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 2017, 8(1): 1368

DOI

30
G. Q. Zhang , J. Q. You . Higher-order exceptional point in a cavity magnonics system. Phys. Rev. B, 2019, 99(5): 054404

DOI

31
R. Huang , Ş. K. Özdemir , J. Q. Liao , F. Minganti , L. M. Kuang , F. Nori , H. Jing . Exceptional photon blockade: engineering photon blockade with chiral exceptional points. Laser Photonics Rev., 2022, 16(7): 2100430

DOI

32
Z. X. Yang , L. Wang , Y. M. Liu , D. Y. Wang , C. H. Bai , S. Zhang , H. F. Wang . Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys., 2020, 15(5): 52504

DOI

33
G. Q. Zhang , Y. P. Wang , J. Q. You . Theory of the magnon Kerr effect in cavity magnonics. Sci. China Phys. Mech. Astron., 2019, 62(8): 987511

DOI

34
Y. P. Wang , G. Q. Zhang , D. Zhang , X. Q. Luo , W. Xiong , S. P. Wang , T. F. Li , C. M. Hu , J. Q. You . Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B, 2016, 94(22): 224410

DOI

35
Z. B. Yang , H. Jin , J. W. Jin , J. Y. Liu , H. Y. Liu , R. C. Yang . Bistability of squeezing and entanglement in cavity magnonics. Phys. Rev. A, 2021, 3: 023126

36
Z. Haghshenasfarda , M. G. Cottam . Sub-Poissonian statistics and squeezing of magnons due to the Kerr effect in a hybrid coupled cavity-magnon system. J. Appl. Phys., 2020, 128(3): 033901

DOI

37
Z. X. Liu , B. Wang , H. Xiong , Y. Wu . Magnon-induced high-order sideband generation. Opt. Lett., 2018, 43(15): 3698

DOI

38
Y. L. Liu , L. Ling , T. Shui , N. Ji , S. P. Liu , W. X. Yang . Two-color second-order sideband generation via magnon Kerr nonlinearity in a cavity magnonical system. J. Opt. Soc. Am. B, 2022, 39: 1042

DOI

39
Z. X. Liu , C. You , B. Wang , H. Xiong , Y. Wu . Phase-mediated magnon chaos-order transition in cavity optomagnonics. Opt. Lett., 2019, 44(3): 507

DOI

40
Y. P. Wang , J. W. Rao , Y. Yang , P. C. Xu , Y. S. Gui , B. M. Yao , J. Q. You , C. M. Hu . Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett., 2019, 123(12): 127202

DOI

41
Z. B. Yang , J. S. Liu , A. D. Zhu , H. Y. Liu , R. C. Yang . Nonreciprocal transmission and nonreciprocal entanglement in a spinning microwave magnomechanical system. Ann. Phys., 2020, 532(9): 2000196

DOI

42
X. B. Yan , H. L. Lu , F. Gao , L. Yang . Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601

DOI

43
S. Y. Hua , J. M. Wen , X. S. Jiang , Q. Hua , L. Jiang , M. Xiao . Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun., 2016, 7(1): 13657

DOI

44
Y. Tokura , M. Kawasaki , N. Nagaosa . Emergent functions of quantum materials. Nat. Phys., 2017, 13(11): 1056

DOI

45
P. Doyeux , S. A. H. Gangaraj , G. W. Hanson , M. Antezza . Giant interatomic energy-transport amplification with nonreciprocal photonic topological insulators. Phys. Rev. Lett., 2017, 119(17): 173901

DOI

46
F. D. M. Haldane , S. Raghu . Possible realization of directional optical wave-guides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 2008, 100(1): 013904

DOI

47
Y. Hadad , B. Z. Steinberg . Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett., 2010, 105(23): 233904

DOI

48
X. X. Guo , Y. M. Ding , Y. Duan , X. J. Ni . Nonreciprocal metasurface with space-time phase modulation. Light Sci. Appl., 2019, 8(1): 123

DOI

49
M. S. Kang , A. Butsch , P. S. J. Russell . Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photonics, 2011, 5(9): 549

DOI

50
Y. Shi , Z. F. Yu , S. H. Fan . Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 2015, 9(6): 388

DOI

51
A. B. Khanikaev , A. Alù . Nonlinear dynamic reciprocity. Nat. Photonics, 2015, 9(6): 359

DOI

52
T. Shui , W. X. Yang , M. T. Cheng , R. K. Lee . Optical nonreciprocity and nonreciprocal photonic devices with directional four-wave mixing effect. Opt. Express, 2022, 30(4): 6284

DOI

53
X. Y. Huang , C. C. Lu , C. Liang , H. G. Tao , Y. C. Liu . Loss-induced nonreciprocity. Light: Sci. Appl., 2021, 10(1): 30

DOI

54
Y. T. Zhao , J. W. Rao , Y. S. Gui , Y. P. Wang , C. M. Hu . Broadband nonreciprocity realized by locally controlling the magnon’s radiation. Phys. Rev. Appl., 2020, 14(1): 014035

DOI

55
N. Zhu , X. Han , C. L. Zou , M. R. Xu , H. X. Tang . Magnon−photon strong coupling for tunable microwave circulators. Phys. Rev. A, 2020, 101(4): 043842

DOI

56
X. F. Zhang , A. Galda , X. Han , D. F. Jin , V. M. Vinokur . Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl., 2020, 13(4): 044039

DOI

57
C. Kong , H. Xiong , Y. Wu . Magnon-induced nonreciprocity based on the magnon Kerr effect. Phys. Rev. Appl., 2019, 12(3): 034001

DOI

58
C. Kong , X. M. Bao , J. B. Liu , H. Xiong . Magnon-mediated nonreciprocal microwave transmission based on quantum interference. Opt. Lett., 2021, 29: 16

59
S. Manipatruni , J. T. Robinson , M. Lipson . Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 2009, 102(21): 213903

DOI

60
A. Metelmann , A. A. Clerk . Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 2015, 5(2): 021025

DOI

61
C. Ciuti , I. Carusotto . Input−output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters. Phys. Rev. A, 2006, 74(3): 033811

DOI

62
C.W. GardinerP.Zoller, Quantum Noise, Springer, 2004

63
J. T. Hou , L. Q. Liu . Strong coupling between microwave photons and nanomagnet magnons. Phys. Rev. Lett., 2019, 123(10): 107702

DOI

Outlines

/