Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect

Cui Kong, Jibing Liu, Hao Xiong

PDF(13174 KB)
PDF(13174 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (1) : 12501. DOI: 10.1007/s11467-022-1203-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect

Author information +
History +

Abstract

Nonreciprocal microwave devices, in which the transmission of waves is non-symmetric between two ports, are indispensable for the manipulation of information processing and communication. In this work, we show the nonreciprocal microwave transmission in a cavity magnonic system under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect. In contrast to the schemes based on the standard phase modulation or magnon Kerr nonlinearity, we find that the joint mechanism enables the nonreciprocal transmission even at low power and makes us obtain a high nonreciprocal isolation ratio. Moreover, when two microwave modes are coupled to the magnon mode via a different coupling strength, the presented strong nonreciprocal response occurs, and it makes the nonreciprocal transmission manipulating by the magnetic field within a large adjustable range possible, which overcomes narrow operating bandwidths. This study may provide promising opportunities to realize nonreciprocal structures for wave transmission.

Graphical abstract

Keywords

nonreciprocal microwave transmission / phase modulation / magnon Kerr nonlinearity effect

Cite this article

Download citation ▾
Cui Kong, Jibing Liu, Hao Xiong. Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect. Front. Phys., 2023, 18(1): 12501 https://doi.org/10.1007/s11467-022-1203-0

References

[1]
H. Walther , B. T. H. Varcoe , B. G. Englert , T. Becker . Cavity quantum electrodynamics. Rep. Prog. Phys., 2006, 69(5): 1325
CrossRef ADS Google scholar
[2]
Q. P. Su , Y. Zhang , L. Bin , C. P. Yang . Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505
CrossRef ADS Google scholar
[3]
D.D. StancilA.Prabhakar, Spin Waves, Springer, New York, 2009
[4]
Ö. O. Soykal , M. E. Flatté . Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett., 2010, 104(7): 077202
CrossRef ADS Google scholar
[5]
B. Zare Rameshti , Y. Cao , G. E. W. Bauer . Magnetic spheres in microwave cavities. Phys. Rev. B, 2015, 91(21): 214430
CrossRef ADS Google scholar
[6]
Y. Tabuchi , S. Ishino , A. Noguchi , T. Ishikawa , R. Yamazaki , K. Usami , Y. Nakamura . Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 2015, 349(6246): 405
CrossRef ADS Google scholar
[7]
J. Shim , S. J. Kim , S. K. Kim , K. J. Lee . Enhanced magnon−photon coupling at the angular momentum compensation point of ferrimagnets. Phys. Rev. Lett., 2020, 125(2): 027205
CrossRef ADS Google scholar
[8]
K. Wang , Y. P. Gao , R. Z. Jiao , C. Wang . Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201
CrossRef ADS Google scholar
[9]
H. J. Kimble . The quantum internet. Nature, 2008, 453(7198): 1023
CrossRef ADS Google scholar
[10]
M. Aspelmeyer , T. J. Kippenberg , F. Marquardt . Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
CrossRef ADS Google scholar
[11]
J. W. Zhou , P. F. Wang , F. Z. Shi , P. Huang , X. Kong , X. K. Xu , Q. Zhang , Z. X. Wang , X. Rong , J. F. Du . Quantum information processing and metrology with color centers in diamonds. Front. Phys., 2014, 9(5): 587
CrossRef ADS Google scholar
[12]
X. Zhang , C. L. Zou , L. Jiang , H. X. Tang . Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett., 2014, 113(15): 156401
CrossRef ADS Google scholar
[13]
M. Goryachev , W. G. Farr , D. L. Creedon , Y. Fan , M. Kostylev , M. E. Tobar . High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl., 2014, 2(5): 054002
CrossRef ADS Google scholar
[14]
D. Zhang , X.-M. Wang , T.-F. Li , X.-Q. Luo , W. Wu , F. Nori , J. Q. You . Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quantum Inf., 2015, 1: 15014
CrossRef ADS Google scholar
[15]
B. Yao , Y. Gui , J. Rao , S. Kaur , X. Chen , W. Lu , Y. Xiao , H. Guo , K. P. Marzlin , C. M. Hu . Cooperative polariton dynamics in feedback-coupled cavities. Nat. Commun., 2017, 8(1): 1437
CrossRef ADS Google scholar
[16]
Y. Tabuchi , S. Ishino , T. Ishikawa , R. Yamazaki , K. Usami , Y. Nakamura . Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett., 2014, 113(8): 083603
CrossRef ADS Google scholar
[17]
N. Kostylev , M. Goryachev , M. E. Tobar . Superstrong coupling of a microwave cavity to yttrium iron garnet magnons. Appl. Phys. Lett., 2016, 108(6): 062402
CrossRef ADS Google scholar
[18]
J. Bourhill , N. Kostylev , M. Goryachev , D. Creedon , M. Tobar . Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere. Phys. Rev. B, 2016, 93(14): 144420
CrossRef ADS Google scholar
[19]
G. Flower , M. Goryachev , J. Bourhill , M. E. Tobar . Experimental implementations of cavity-magnon systems: From ultra strong coupling to applications in precision measurement. New J. Phys., 2019, 21(9): 095004
CrossRef ADS Google scholar
[20]
L. Bai , M. Harder , Y. P. Chen , X. Fan , J. Q. Xiao , C. M. Hu . Spin pumping in electrodynamically coupled magnon−photon systems. Phys. Rev. Lett., 2015, 114(22): 227201
CrossRef ADS Google scholar
[21]
Y. P. Wang , G. Q. Zhang , D. Zhang , T. F. Li , C. M. Hu , J. Q. You . Bistability of cavity magnon polaritons. Phys. Rev. Lett., 2018, 120(5): 057202
CrossRef ADS Google scholar
[22]
X. F. Zhang , C. L. Zou , N. Zhu , F. Marquardt , L. Jiang , H. X. Tang . Magnon dark modes and gradient memory. Nat. Commun., 2015, 6(1): 8914
CrossRef ADS Google scholar
[23]
R. C. Shen , Y. P. Wang , J. Li , S. Y. Zhu , G. S. Agarwal , J. Q. You . Long-time memory and ternary logic gate using a multistable cavity magnonic system. Phys. Rev. Lett., 2021, 127(18): 183202
CrossRef ADS Google scholar
[24]
Y. P. Wang , C. M. Hu . Dissipative couplings in cavity magnonics. J. Appl. Phys., 2020, 127(13): 130901
CrossRef ADS Google scholar
[25]
M. Harder , Y. Yang , B. M. Yao , C. H. Yu , J. W. Rao , Y. S. Gui , R. L. Stamps , C. M. Hu . Level attraction due to dissipative magnon−photon coupling. Phys. Rev. Lett., 2018, 121(13): 137203
CrossRef ADS Google scholar
[26]
J. W. Rao , C. H. Yu , Y. T. Zhao , Y. S. Gui , X. Fan , D. Xue , C. M. Hu . Level attraction and level repulsion of magnon coupled with a cavity anti-resonance. New J. Phys., 2019, 21(6): 065001
CrossRef ADS Google scholar
[27]
Y. Cao , P. Yan , H. Huebl , S. T. B. Goennenwein , G. E. W. Bauer . Exchange magnon-polaritons in microwave cavities. Phys. Rev. B, 2015, 91(9): 094423
CrossRef ADS Google scholar
[28]
L. Bai , M. Harder , P. Hyde , Z. Zhang , C. M. Hu , Y. P. Chen , J. Q. Xiao . Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton. Phys. Rev. Lett., 2017, 118(21): 217201
CrossRef ADS Google scholar
[29]
D. Zhang , X. Q. Luo , Y. P. Wang , T. F. Li , J. Q. You . Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 2017, 8(1): 1368
CrossRef ADS Google scholar
[30]
G. Q. Zhang , J. Q. You . Higher-order exceptional point in a cavity magnonics system. Phys. Rev. B, 2019, 99(5): 054404
CrossRef ADS Google scholar
[31]
R. Huang , Ş. K. Özdemir , J. Q. Liao , F. Minganti , L. M. Kuang , F. Nori , H. Jing . Exceptional photon blockade: engineering photon blockade with chiral exceptional points. Laser Photonics Rev., 2022, 16(7): 2100430
CrossRef ADS Google scholar
[32]
Z. X. Yang , L. Wang , Y. M. Liu , D. Y. Wang , C. H. Bai , S. Zhang , H. F. Wang . Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys., 2020, 15(5): 52504
CrossRef ADS Google scholar
[33]
G. Q. Zhang , Y. P. Wang , J. Q. You . Theory of the magnon Kerr effect in cavity magnonics. Sci. China Phys. Mech. Astron., 2019, 62(8): 987511
CrossRef ADS Google scholar
[34]
Y. P. Wang , G. Q. Zhang , D. Zhang , X. Q. Luo , W. Xiong , S. P. Wang , T. F. Li , C. M. Hu , J. Q. You . Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B, 2016, 94(22): 224410
CrossRef ADS Google scholar
[35]
Z. B. Yang , H. Jin , J. W. Jin , J. Y. Liu , H. Y. Liu , R. C. Yang . Bistability of squeezing and entanglement in cavity magnonics. Phys. Rev. A, 2021, 3: 023126
[36]
Z. Haghshenasfarda , M. G. Cottam . Sub-Poissonian statistics and squeezing of magnons due to the Kerr effect in a hybrid coupled cavity-magnon system. J. Appl. Phys., 2020, 128(3): 033901
CrossRef ADS Google scholar
[37]
Z. X. Liu , B. Wang , H. Xiong , Y. Wu . Magnon-induced high-order sideband generation. Opt. Lett., 2018, 43(15): 3698
CrossRef ADS Google scholar
[38]
Y. L. Liu , L. Ling , T. Shui , N. Ji , S. P. Liu , W. X. Yang . Two-color second-order sideband generation via magnon Kerr nonlinearity in a cavity magnonical system. J. Opt. Soc. Am. B, 2022, 39: 1042
CrossRef ADS Google scholar
[39]
Z. X. Liu , C. You , B. Wang , H. Xiong , Y. Wu . Phase-mediated magnon chaos-order transition in cavity optomagnonics. Opt. Lett., 2019, 44(3): 507
CrossRef ADS Google scholar
[40]
Y. P. Wang , J. W. Rao , Y. Yang , P. C. Xu , Y. S. Gui , B. M. Yao , J. Q. You , C. M. Hu . Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett., 2019, 123(12): 127202
CrossRef ADS Google scholar
[41]
Z. B. Yang , J. S. Liu , A. D. Zhu , H. Y. Liu , R. C. Yang . Nonreciprocal transmission and nonreciprocal entanglement in a spinning microwave magnomechanical system. Ann. Phys., 2020, 532(9): 2000196
CrossRef ADS Google scholar
[42]
X. B. Yan , H. L. Lu , F. Gao , L. Yang . Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601
CrossRef ADS Google scholar
[43]
S. Y. Hua , J. M. Wen , X. S. Jiang , Q. Hua , L. Jiang , M. Xiao . Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun., 2016, 7(1): 13657
CrossRef ADS Google scholar
[44]
Y. Tokura , M. Kawasaki , N. Nagaosa . Emergent functions of quantum materials. Nat. Phys., 2017, 13(11): 1056
CrossRef ADS Google scholar
[45]
P. Doyeux , S. A. H. Gangaraj , G. W. Hanson , M. Antezza . Giant interatomic energy-transport amplification with nonreciprocal photonic topological insulators. Phys. Rev. Lett., 2017, 119(17): 173901
CrossRef ADS Google scholar
[46]
F. D. M. Haldane , S. Raghu . Possible realization of directional optical wave-guides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 2008, 100(1): 013904
CrossRef ADS Google scholar
[47]
Y. Hadad , B. Z. Steinberg . Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett., 2010, 105(23): 233904
CrossRef ADS Google scholar
[48]
X. X. Guo , Y. M. Ding , Y. Duan , X. J. Ni . Nonreciprocal metasurface with space-time phase modulation. Light Sci. Appl., 2019, 8(1): 123
CrossRef ADS Google scholar
[49]
M. S. Kang , A. Butsch , P. S. J. Russell . Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photonics, 2011, 5(9): 549
CrossRef ADS Google scholar
[50]
Y. Shi , Z. F. Yu , S. H. Fan . Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 2015, 9(6): 388
CrossRef ADS Google scholar
[51]
A. B. Khanikaev , A. Alù . Nonlinear dynamic reciprocity. Nat. Photonics, 2015, 9(6): 359
CrossRef ADS Google scholar
[52]
T. Shui , W. X. Yang , M. T. Cheng , R. K. Lee . Optical nonreciprocity and nonreciprocal photonic devices with directional four-wave mixing effect. Opt. Express, 2022, 30(4): 6284
CrossRef ADS Google scholar
[53]
X. Y. Huang , C. C. Lu , C. Liang , H. G. Tao , Y. C. Liu . Loss-induced nonreciprocity. Light: Sci. Appl., 2021, 10(1): 30
CrossRef ADS Google scholar
[54]
Y. T. Zhao , J. W. Rao , Y. S. Gui , Y. P. Wang , C. M. Hu . Broadband nonreciprocity realized by locally controlling the magnon’s radiation. Phys. Rev. Appl., 2020, 14(1): 014035
CrossRef ADS Google scholar
[55]
N. Zhu , X. Han , C. L. Zou , M. R. Xu , H. X. Tang . Magnon−photon strong coupling for tunable microwave circulators. Phys. Rev. A, 2020, 101(4): 043842
CrossRef ADS Google scholar
[56]
X. F. Zhang , A. Galda , X. Han , D. F. Jin , V. M. Vinokur . Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl., 2020, 13(4): 044039
CrossRef ADS Google scholar
[57]
C. Kong , H. Xiong , Y. Wu . Magnon-induced nonreciprocity based on the magnon Kerr effect. Phys. Rev. Appl., 2019, 12(3): 034001
CrossRef ADS Google scholar
[58]
C. Kong , X. M. Bao , J. B. Liu , H. Xiong . Magnon-mediated nonreciprocal microwave transmission based on quantum interference. Opt. Lett., 2021, 29: 16
[59]
S. Manipatruni , J. T. Robinson , M. Lipson . Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 2009, 102(21): 213903
CrossRef ADS Google scholar
[60]
A. Metelmann , A. A. Clerk . Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 2015, 5(2): 021025
CrossRef ADS Google scholar
[61]
C. Ciuti , I. Carusotto . Input−output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters. Phys. Rev. A, 2006, 74(3): 033811
CrossRef ADS Google scholar
[62]
C.W. GardinerP.Zoller, Quantum Noise, Springer, 2004
[63]
J. T. Hou , L. Q. Liu . Strong coupling between microwave photons and nanomagnet magnons. Phys. Rev. Lett., 2019, 123(10): 107702
CrossRef ADS Google scholar

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 12105092 and 12022507) and Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institution of Hubei Province (No. T2020014).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(13174 KB)

Accesses

Citations

Detail

Sections
Recommended

/