
Sn doping induced n-type to p-type transition in Bi2Se3 nanosheets for flexible temperature sensing
Jian Wang, Congmin Yu, Xin Wang, Zhiwei Yang, Jian Zhang, Xiao Huang
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044202.
Sn doping induced n-type to p-type transition in Bi2Se3 nanosheets for flexible temperature sensing
Flexible temperature sensors capable of simultaneously delivering high sensitivity, precision, and stability are essential to meet the increasing demands for monitoring temperature changes associated with infections and diseases. Herein, we fabricated a flexible temperature sensor using Bi2Se3-based thermosensitive materials. Through Sn-doping, an n-type to p-type transition was realized in Bi2Se3 nanosheets, leading to enhanced temperature sensing performance. The Bi1.97Sn0.03Se3 nanosheets with optimal doping level exhibited a high sensitivity of –0.63%/°C. The fabricated temperature sensor could detect skin temperature with high precision and stability. Moreover, by taking advantage of the n–p transition, a flexible double-chain thermoelectric generator consisting of n-type Bi2Se3 and p-type Bi1.97Sn0.03Se3 was also fabricated, demonstrating its potential for thermal energy harvesting and self-powered temperature sensing.
Bi2Se3 / metal doping / n-p transition / temperature sensing
[1] |
B. A. Kuzubasoglu, E. Sayar, C. Cochrane, V. Koncar, and S. K. Bahadir, Wearable temperature sensor for human body temperature detection, J. Mater. Sci. Mater. Electron. 32(4), 4784 (2021)
CrossRef
ADS
Google scholar
|
[2] |
M. Zhu, M. U. Ali, C. Zou, W. Xie, S. Li, and H. Meng, Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication, Front. Phys. (Beijing) 16(1), 13302 (2021)
CrossRef
ADS
Google scholar
|
[3] |
J. Lee, N. Hong, W. Hong, D. Kim, Y. Hwang, J. Jang, and H. Kang, Semi‐transparent, micrometer resolution p-NiO/n-ZnO heterojunction diode temperature sensors with ultrathin metal anode, Adv. Mater. Technol. 7(6), 2100923 (2022)
CrossRef
ADS
Google scholar
|
[4] |
A. Nag, R. B. V. B. Simorangkir, D. R. Gawade, S. Nuthalapati, J. L. Buckley, B. O’Flynn, M. E. Altinsoy, and S. C. Mukhopadhyay, Graphene-based wearable temperature sensors: A review, Mater. Des. 13, 2339 (2022)
CrossRef
ADS
Google scholar
|
[5] |
J. Shin, B. Jeong, J. Kim, V. B. Nam, Y. Yoon, J. Jung, S. Hong, H. Lee, H. Eom, J. Yeo, J. Choi, D. Lee, and S. H. Ko, Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration, Adv. Mater. 32(2), 1905527 (2020)
CrossRef
ADS
Google scholar
|
[6] |
S. S. Courts, A standardized diode cryogenic temperature sensor for aerospace applications, Cryogenics 74, 172 (2016)
|
[7] |
Z. Liu, B. Tian, Z. Jiang, S. Li, J. Lei, Z. Zhang, J. Liu, P. Shi, and Q. Lin, Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200 °C, Int. J. Extreme Manuf. 5(1), 5601 (2022)
CrossRef
ADS
Google scholar
|
[8] |
J. J. Wang, T. Wang, C. G. Wu, W. B. Luo, Y. Shuai, and W. L. Zhang, Highly precise Ti/Pt/Cr/Au thin-film temperature sensor embedded in a microfluidic device, Rare Met. 40(1), 195 (2021)
CrossRef
ADS
Google scholar
|
[9] |
R. Liu, L. He, M. Cao, Z. Sun, R. Zhu, and Y. Li, Flexible temperature sensors, Front Chem. 9, 539678 (2021)
CrossRef
ADS
Google scholar
|
[10] |
S. D. Yang, L. Yang, Y. X. Zheng, W. J. Zhou, M. Y. Gao, S. Y. Wang, R. J. Zhang, and L. Y. Chen, Structure-dependent optical properties of self-organized Bi2Se3 nanostructures: From nanocrystals to nanoflakes, ACS Appl. Mater. Interfaces 9(34), 29295 (2017)
CrossRef
ADS
Google scholar
|
[11] |
L. Liu, M. Zhang, Q. Liu, and The raman spectra of Co-, Fe-, and Mn-doped Bi2Se3 single crystals, Crystals (Basel) 13(3), 456 (2023)
CrossRef
ADS
Google scholar
|
[12] |
K. Mazumder, A. Sharma, Y. Kumar, P. Bankar, M. A. More, R. Devan, and P. M. Shirage, Enhancement of field electron emission in topological insulator Bi2Se3 by Ni doping, Phys. Chem. Chem. Phys. 20(27), 18429 (2018)
CrossRef
ADS
Google scholar
|
[13] |
J. Dai, D. West, X. Wang, Y. Wang, D. Kwok, S. W. Cheong, S. B. Zhang, and W. Wu, Toward the intrinsic limit of the topological insulator Bi2Se3, Phys. Rev. Lett. 117(10), 106401 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
X. Liu, D. Wang, H. Wu, J. Wang, Y. Zhang, G. Wang, S. J. Pennycook, and L. D. Zhao, Intrinsically low thermal conductivity in BiSbSe3: A promising thermoelectric material with multiple conduction bands, Adv. Funct. Mater. 29(3), 1806558 (2019)
CrossRef
ADS
Google scholar
|
[15] |
K. Mazumder,P. M. Shirage, A brief review of Bi2Se3 based topological insulator: From fundamentals to applications, J. Alloys Compd. 888, 161492 (2021)
|
[16] |
G. Sun, X. Qin, D. Li, J. Zhang, B. Ren, T. Zou, H. Xin, S. B. Paschen, and X. Yan, Enhanced thermoelectric performance of n-type Bi2Se3 doped with Cu, J. Alloys Compd. 639, 9 (2015)
CrossRef
ADS
Google scholar
|
[17] |
S. Gautam, A. K. Verma, A. Balapure, B. Singh, R. Ganesan, M. S. Kumar, V. N. Singh, B. Gahtori, and S. S. Kushvaha, Structural, electronic and thermoelectric properties of Bi2Se3 thin films deposited by RF magnetron sputtering, J. Electron. Mater. 51(5), 2500 (2022)
CrossRef
ADS
Google scholar
|
[18] |
P. Singha, S. Das, N. Rana, S. Mukherjee, S. Chatterjee, S. Bandyopadhyay, and A. Banerjee, Investigation of thermoelectric and magnetotransport properties of single crystalline Bi2Se3 topological insulator, J. Appl. Phys. 135(2), 025001 (2024)
CrossRef
ADS
Google scholar
|
[19] |
Y. Xiong, G. Zhou, N. C. Lai, X. Wang, Y. C. Lu, O. V. Prezhdo, and D. Xu, Chemically switchable n-type and p-type conduction in bismuth selenide nanoribbons for thermoelectric energy harvesting, ACS Nano 15(2), 2791 (2021)
CrossRef
ADS
Google scholar
|
[20] |
M. A. Tumelero, M. B. Martins, P. B. Souza, R. D. Della Pace, and A. A. Pasa, Effect of electrolyte on the growth of thermoelectric Bi2Se3 thin films, Electrochim. Acta 300, 357 (2019)
CrossRef
ADS
Google scholar
|
[21] |
M. Hong, Z. G. Chen, L. Yang, G. Han, and J. Zou, Enhanced thermoelectric performance of ultrathin Bi2Se3 nanosheets through thickness control, Adv. Electron. Mater. 1(6), 1500025 (2015)
CrossRef
ADS
Google scholar
|
[22] |
J. Bao, S. Zeng, J. Dai, X. Wang, Q. Liu, H. Li, X. Huang, and W. Huang, Heterostructures between a tin-based intermetallic compound and a layered semiconductor for gas sensing, Chem. Commun. (Camb.) 57(45), 5590 (2021)
CrossRef
ADS
Google scholar
|
[23] |
R. Ren, P. Qin, J. Song, Y. Qin, W. Li, Y. Wang, X. Yang, J. Li, W. Löser, and C. Cao, Crystal growth and thermoelectric properties of Sn-doped Bi2Se3, J. Cryst. Growth 627, 127510 (2024)
CrossRef
ADS
Google scholar
|
[24] |
C. C. Wang, Y. S. Chang, P. T. Lin, F. S. Shieu, and H. C. Shih, Fabrication, characterization and optical properties of Au-decorated Bi2Se3 nanoplatelets, Sci. Rep. 12(1), 17761 (2022)
CrossRef
ADS
Google scholar
|
[25] |
A. Zhuang, J. J. Li, Y. C. Wang, X. Wen, Y. Lin, B. Xiang, X. Wang, and J. Zeng, Screw‐dislocation‐driven bidirectional spiral growth of Bi2Se3 nanoplates, Angew. Chem. Int. Ed. 53(25), 6425 (2014)
CrossRef
ADS
Google scholar
|
[26] |
H. Liu, K. Sun, X. L. Guo, Z. L. Liu, Y. H. Wang, Y. Yang, D. Yu, Y. T. Li, and T. L. Ren, An ultrahigh linear sensitive temperature sensor based on PANI: graphene and PDMS hybrid with negative temperature compensation, ACS Nano 16(12), 21527 (2022)
CrossRef
ADS
Google scholar
|
[27] |
Y. Min, J. W. Roh, H. Yang, M. Park, S. I. Kim, S. Hwang, S. M. Lee, K. H. Lee, and U. Jeong, Surfactant‐free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites, Adv. Mater. 25(10), 1425 (2013)
CrossRef
ADS
Google scholar
|
[28] |
L. Tian, G. Sun, D. Jing, C. Pan, Z. Ran, W. Shi, and C. Zhang, Temperature characteristic of carrier scattering and dark resistivity of semi-insulating GaAs, J. Appl. Phys. 130, 195107 (2021)
CrossRef
ADS
Google scholar
|
[29] |
L. C. Hao, Z. A. Chen, D. Y. Liu, W. K. Zhao, M. Zhang, K. Tang, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films, Chin. Phys. B 32, 038101 (2023)
CrossRef
ADS
Google scholar
|
[30] |
C. Yan, J. Wang, and P. S. Lee, Stretchable graphene thermistor with tunable thermal index, ACS Nano 9(2), 2130 (2015)
CrossRef
ADS
Google scholar
|
[31] |
D. L. Wen, H. T. Deng, X. Liu, G. K. Li, X. R. Zhang, and X. S. Zhang, Wearable multi-sensing double-chain thermoelectric generator, Microsyst. Nanoeng. 6(1), 68 (2020)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |