Sn doping induced n-type to p-type transition in Bi2Se3 nanosheets for flexible temperature sensing

Jian Wang, Congmin Yu, Xin Wang, Zhiwei Yang, Jian Zhang, Xiao Huang

Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044202.

PDF(3000 KB)
PDF(3000 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044202. DOI: 10.15302/frontphys.2025.044202
RESEARCH ARTICLE

Sn doping induced n-type to p-type transition in Bi2Se3 nanosheets for flexible temperature sensing

Author information +
History +

Abstract

Flexible temperature sensors capable of simultaneously delivering high sensitivity, precision, and stability are essential to meet the increasing demands for monitoring temperature changes associated with infections and diseases. Herein, we fabricated a flexible temperature sensor using Bi2Se3-based thermosensitive materials. Through Sn-doping, an n-type to p-type transition was realized in Bi2Se3 nanosheets, leading to enhanced temperature sensing performance. The Bi1.97Sn0.03Se3 nanosheets with optimal doping level exhibited a high sensitivity of –0.63%/°C. The fabricated temperature sensor could detect skin temperature with high precision and stability. Moreover, by taking advantage of the n–p transition, a flexible double-chain thermoelectric generator consisting of n-type Bi2Se3 and p-type Bi1.97Sn0.03Se3 was also fabricated, demonstrating its potential for thermal energy harvesting and self-powered temperature sensing.

Graphical abstract

Keywords

Bi2Se3 / metal doping / n-p transition / temperature sensing

Cite this article

Download citation ▾
Jian Wang, Congmin Yu, Xin Wang, Zhiwei Yang, Jian Zhang, Xiao Huang. Sn doping induced n-type to p-type transition in Bi2Se3 nanosheets for flexible temperature sensing. Front. Phys., 2025, 20(4): 044202 https://doi.org/10.15302/frontphys.2025.044202

References

[1]
B. A. Kuzubasoglu, E. Sayar, C. Cochrane, V. Koncar, and S. K. Bahadir, Wearable temperature sensor for human body temperature detection, J. Mater. Sci. Mater. Electron. 32(4), 4784 (2021)
CrossRef ADS Google scholar
[2]
M. Zhu, M. U. Ali, C. Zou, W. Xie, S. Li, and H. Meng, Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication, Front. Phys. (Beijing) 16(1), 13302 (2021)
CrossRef ADS Google scholar
[3]
J. Lee, N. Hong, W. Hong, D. Kim, Y. Hwang, J. Jang, and H. Kang, Semi‐transparent, micrometer resolution p-NiO/n-ZnO heterojunction diode temperature sensors with ultrathin metal anode, Adv. Mater. Technol. 7(6), 2100923 (2022)
CrossRef ADS Google scholar
[4]
A. Nag, R. B. V. B. Simorangkir, D. R. Gawade, S. Nuthalapati, J. L. Buckley, B. O’Flynn, M. E. Altinsoy, and S. C. Mukhopadhyay, Graphene-based wearable temperature sensors: A review, Mater. Des. 13, 2339 (2022)
CrossRef ADS Google scholar
[5]
J. Shin, B. Jeong, J. Kim, V. B. Nam, Y. Yoon, J. Jung, S. Hong, H. Lee, H. Eom, J. Yeo, J. Choi, D. Lee, and S. H. Ko, Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration, Adv. Mater. 32(2), 1905527 (2020)
CrossRef ADS Google scholar
[6]
S. S. Courts, A standardized diode cryogenic temperature sensor for aerospace applications, Cryogenics 74, 172 (2016)
[7]
Z. Liu, B. Tian, Z. Jiang, S. Li, J. Lei, Z. Zhang, J. Liu, P. Shi, and Q. Lin, Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200 °C, Int. J. Extreme Manuf. 5(1), 5601 (2022)
CrossRef ADS Google scholar
[8]
J. J. Wang, T. Wang, C. G. Wu, W. B. Luo, Y. Shuai, and W. L. Zhang, Highly precise Ti/Pt/Cr/Au thin-film temperature sensor embedded in a microfluidic device, Rare Met. 40(1), 195 (2021)
CrossRef ADS Google scholar
[9]
R. Liu, L. He, M. Cao, Z. Sun, R. Zhu, and Y. Li, Flexible temperature sensors, Front Chem. 9, 539678 (2021)
CrossRef ADS Google scholar
[10]
S. D. Yang, L. Yang, Y. X. Zheng, W. J. Zhou, M. Y. Gao, S. Y. Wang, R. J. Zhang, and L. Y. Chen, Structure-dependent optical properties of self-organized Bi2Se3 nanostructures: From nanocrystals to nanoflakes, ACS Appl. Mater. Interfaces 9(34), 29295 (2017)
CrossRef ADS Google scholar
[11]
L. Liu, M. Zhang, Q. Liu, and The raman spectra of Co-, Fe-, and Mn-doped Bi2Se3 single crystals, Crystals (Basel) 13(3), 456 (2023)
CrossRef ADS Google scholar
[12]
K. Mazumder, A. Sharma, Y. Kumar, P. Bankar, M. A. More, R. Devan, and P. M. Shirage, Enhancement of field electron emission in topological insulator Bi2Se3 by Ni doping, Phys. Chem. Chem. Phys. 20(27), 18429 (2018)
CrossRef ADS Google scholar
[13]
J. Dai, D. West, X. Wang, Y. Wang, D. Kwok, S. W. Cheong, S. B. Zhang, and W. Wu, Toward the intrinsic limit of the topological insulator Bi2Se3, Phys. Rev. Lett. 117(10), 106401 (2016)
CrossRef ADS arXiv Google scholar
[14]
X. Liu, D. Wang, H. Wu, J. Wang, Y. Zhang, G. Wang, S. J. Pennycook, and L. D. Zhao, Intrinsically low thermal conductivity in BiSbSe3: A promising thermoelectric material with multiple conduction bands, Adv. Funct. Mater. 29(3), 1806558 (2019)
CrossRef ADS Google scholar
[15]
K. Mazumder,P. M. Shirage, A brief review of Bi2Se3 based topological insulator: From fundamentals to applications, J. Alloys Compd. 888, 161492 (2021)
[16]
G. Sun, X. Qin, D. Li, J. Zhang, B. Ren, T. Zou, H. Xin, S. B. Paschen, and X. Yan, Enhanced thermoelectric performance of n-type Bi2Se3 doped with Cu, J. Alloys Compd. 639, 9 (2015)
CrossRef ADS Google scholar
[17]
S. Gautam, A. K. Verma, A. Balapure, B. Singh, R. Ganesan, M. S. Kumar, V. N. Singh, B. Gahtori, and S. S. Kushvaha, Structural, electronic and thermoelectric properties of Bi2Se3 thin films deposited by RF magnetron sputtering, J. Electron. Mater. 51(5), 2500 (2022)
CrossRef ADS Google scholar
[18]
P. Singha, S. Das, N. Rana, S. Mukherjee, S. Chatterjee, S. Bandyopadhyay, and A. Banerjee, Investigation of thermoelectric and magnetotransport properties of single crystalline Bi2Se3 topological insulator, J. Appl. Phys. 135(2), 025001 (2024)
CrossRef ADS Google scholar
[19]
Y. Xiong, G. Zhou, N. C. Lai, X. Wang, Y. C. Lu, O. V. Prezhdo, and D. Xu, Chemically switchable n-type and p-type conduction in bismuth selenide nanoribbons for thermoelectric energy harvesting, ACS Nano 15(2), 2791 (2021)
CrossRef ADS Google scholar
[20]
M. A. Tumelero, M. B. Martins, P. B. Souza, R. D. Della Pace, and A. A. Pasa, Effect of electrolyte on the growth of thermoelectric Bi2Se3 thin films, Electrochim. Acta 300, 357 (2019)
CrossRef ADS Google scholar
[21]
M. Hong, Z. G. Chen, L. Yang, G. Han, and J. Zou, Enhanced thermoelectric performance of ultrathin Bi2Se3 nanosheets through thickness control, Adv. Electron. Mater. 1(6), 1500025 (2015)
CrossRef ADS Google scholar
[22]
J. Bao, S. Zeng, J. Dai, X. Wang, Q. Liu, H. Li, X. Huang, and W. Huang, Heterostructures between a tin-based intermetallic compound and a layered semiconductor for gas sensing, Chem. Commun. (Camb.) 57(45), 5590 (2021)
CrossRef ADS Google scholar
[23]
R. Ren, P. Qin, J. Song, Y. Qin, W. Li, Y. Wang, X. Yang, J. Li, W. Löser, and C. Cao, Crystal growth and thermoelectric properties of Sn-doped Bi2Se3, J. Cryst. Growth 627, 127510 (2024)
CrossRef ADS Google scholar
[24]
C. C. Wang, Y. S. Chang, P. T. Lin, F. S. Shieu, and H. C. Shih, Fabrication, characterization and optical properties of Au-decorated Bi2Se3 nanoplatelets, Sci. Rep. 12(1), 17761 (2022)
CrossRef ADS Google scholar
[25]
A. Zhuang, J. J. Li, Y. C. Wang, X. Wen, Y. Lin, B. Xiang, X. Wang, and J. Zeng, Screw‐dislocation‐driven bidirectional spiral growth of Bi2Se3 nanoplates, Angew. Chem. Int. Ed. 53(25), 6425 (2014)
CrossRef ADS Google scholar
[26]
H. Liu, K. Sun, X. L. Guo, Z. L. Liu, Y. H. Wang, Y. Yang, D. Yu, Y. T. Li, and T. L. Ren, An ultrahigh linear sensitive temperature sensor based on PANI: graphene and PDMS hybrid with negative temperature compensation, ACS Nano 16(12), 21527 (2022)
CrossRef ADS Google scholar
[27]
Y. Min, J. W. Roh, H. Yang, M. Park, S. I. Kim, S. Hwang, S. M. Lee, K. H. Lee, and U. Jeong, Surfactant‐free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites, Adv. Mater. 25(10), 1425 (2013)
CrossRef ADS Google scholar
[28]
L. Tian, G. Sun, D. Jing, C. Pan, Z. Ran, W. Shi, and C. Zhang, Temperature characteristic of carrier scattering and dark resistivity of semi-insulating GaAs, J. Appl. Phys. 130, 195107 (2021)
CrossRef ADS Google scholar
[29]
L. C. Hao, Z. A. Chen, D. Y. Liu, W. K. Zhao, M. Zhang, K. Tang, S. M. Zhu, J. D. Ye, R. Zhang, and Y. D. Zheng, Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films, Chin. Phys. B 32, 038101 (2023)
CrossRef ADS Google scholar
[30]
C. Yan, J. Wang, and P. S. Lee, Stretchable graphene thermistor with tunable thermal index, ACS Nano 9(2), 2130 (2015)
CrossRef ADS Google scholar
[31]
D. L. Wen, H. T. Deng, X. Liu, G. K. Li, X. R. Zhang, and X. S. Zhang, Wearable multi-sensing double-chain thermoelectric generator, Microsyst. Nanoeng. 6(1), 68 (2020)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.044202.

Acknowledgements

This work was supported by the National Key Basic Research Program of China (Grant No. 2021YFB3200302) and the National Natural Science Foundation of China (Grant Nos. 62374086 and 62288102).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(3000 KB)

Accesses

Citations

Detail

Sections
Recommended

/