
Zero-energy quantum many-body scar under emergent chiral symmetry and pseudo Hilbert space fragmentation
Li Zhang, Yongguan Ke, Chaohong Lee
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044201.
Zero-energy quantum many-body scar under emergent chiral symmetry and pseudo Hilbert space fragmentation
Hilbert space fragmentation (HSF) is a mechanism for generating quantum many-body scar (QMBS), which provides a route to weakly break ergodicity. Many scarred systems possess an exponentially large number of zero-energy states due to the chiral symmetry induced bipartition of the Hilbert space. In this work, we study the QMBS phenomenology under the interplay between the chiral symmetry and pseudo HSF, where the Hilbert space is approximately fragmented into different blocks. We consider a model of tilted chain of interacting spinless fermions with periodically varying tunneling strength. At small tunneling strength, we analytically derive the resonance conditions under which the system is described by an effective model with chiral symmetry and pseudo HSF. We find that the interplay between the two gives rise to a highly localized zero-energy QMBS when the particle number is even. This zero-energy QMBS induces an unusual scarred dynamical phenomenon. Specifically, the fidelity from a simple initial state oscillates around a finite fixed value without decaying, instead of showing the typical decaying collapse and revival observed when the particle number is odd and in common scarred systems. We show that the signature of the unusual scarred dynamical behaviour can also be detected in the original driven system by measuring local observables. Our findings enrich the scar phenomenon and deepen the understanding of the relation between Hilbert space structure and QMBS.
quantum thermalization / quantum many-body scars / Hilbert space fragmentation / Floquet systems
Fig.1 The Hilbert space graph of Hamiltonian (4) at (a) |
Fig.2 The normalized distribution |
Fig.3 Dynamics after quenching from |
Fig.4 The FTA (normalized to the maximum value) of |
Fig.5 The properties of the Floquet states at |
Fig.6 The middle site density |
[1] |
J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43(4), 2046 (1991)
CrossRef
ADS
Google scholar
|
[2] |
M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50(2), 888 (1994)
CrossRef
ADS
Google scholar
|
[3] |
M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, J. Phys. Math. Gen. 32(7), 1163 (1999)
CrossRef
ADS
Google scholar
|
[4] |
M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452(7189), 854 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81(8), 082001 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core Bosons, Phys. Rev. Lett. 98(5), 050405 (2007)
CrossRef
ADS
Google scholar
|
[7] |
R. Steinigeweg, J. Herbrych, and P. Prelovšek, Eigenstate thermalization within isolated spin-chain systems, Phys. Rev. E 87(1), 012118 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
F. H. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable quantum spin chains, J. Stat. Mech. 2016(6), 064002 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
P. Calabrese, F. H. Essler, and G. Mussardo, Introduction to “quantum integrability in out of equilibrium systems”, J. Stat. Mech. 2016(6), 064001 (2016)
CrossRef
ADS
Google scholar
|
[10] |
L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. 2016(6), 064007 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting electrons in disordered wires: Anderson localization and low-T transport, Phys. Rev. Lett. 95(20), 206603 (2005)
CrossRef
ADS
Google scholar
|
[12] |
D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys. 321(5), 1126 (2006)
CrossRef
ADS
Google scholar
|
[13] |
R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91(2), 021001 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551(7682), 579 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[16] |
C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Weak ergodicity breaking from quantum many-body scars, Nat. Phys. 14(7), 745 (2018)
CrossRef
ADS
Google scholar
|
[17] |
C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papić, Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, and breakdown of thermalization, and stability to perturbations, Phys. Rev. B 98(15), 155134 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
W. Ho, S. Choi, H. Pichler, M. D. Lukin, Periodic orbits, and entanglement , and quantum many-body scars in constrained models: Matrix product state approach, Phys. Rev. Lett. 122(4), 040603 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
A. A. Michailidis, C. J. Turner, Z. Papic, D. A. Abanin, and M. Serbyn, Slow quantum thermalization and many-body revivals from mixed phase space, Phys. Rev. X 10(1), 011055 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
C. J. Turner, J. Y. Desaules, K. Bull, and Z. Papić, Correspondence principle for many-body scars in ultracold Rydberg atoms, Phys. Rev. X 11(2), 021021 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17(6), 675 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
A. Chandran, T. Iadecola, V. Khemani, and R. Moessner, Quantum many-body scars: A quasiparticle perspective, Annu. Rev. Condens. Matter Phys. 14(1), 443 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
P. Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann, Ergodicity breaking arising from Hilbert space fragmentation in dipole-conserving Hamiltonians, Phys. Rev. X 10(1), 011047 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
H. Zhao, J. Vovrosh, F. Mintert, and J. Knolle, Quantum many-body scars in optical lattices, Phys. Rev. Lett. 124(16), 160604 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[25] |
A. Hudomal, I. Vasić, N. Regnault, and Z. Papić, Quantum scars of bosons with correlated hopping, Commun. Phys. 3(1), 99 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
J. Y. Desaules, A. Hudomal, C. J. Turner, and Z. Papić, Proposal for realizing quantum scars in the tilted 1D Fermi–Hubbard model, Phys. Rev. Lett. 126(21), 210601 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
P. Zhang, H. Dong, Y. Gao, L. Zhao, J. Hao, J. Y. Desaules, Q. Guo, J. Chen, J. Deng, B. Liu, W. Ren, Y. Yao, X. Zhang, S. Xu, K. Wang, F. Jin, X. Zhu, B. Zhang, H. Li, C. Song, Z. Wang, F. Liu, Z. Papić, L. Ying, H. Wang, and Y. C. Lai, Many-body Hilbert space scarring on a superconducting processor, Nat. Phys. 19(1), 120 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[28] |
Z. Guo, B. Liu, Y. Gao, A. Yang, J. Wang, J. Ma, and L. Ying, Origin of Hilbert-space quantum scars in unconstrained models, Phys. Rev. B 108(7), 075124 (2023)
CrossRef
ADS
Google scholar
|
[29] |
S. Moudgalya, S. Rachel, B. A. Bernevig, and N. Regnault, Exact excited states of nonintegrable models, Phys. Rev. B 98(23), 235155 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
S. Moudgalya, N. Regnault, B. A. Bernevig, Entanglement of exact excited states of Affleck–Kennedy–Lieb–Tasaki models: Exact results, and many-body scars, and violation of the strong eigenstate thermalization hypothesis, Phys. Rev. B 98(23), 235156 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
M. Schecter and T. Iadecola, Weak ergodicity breaking and quantum many-body scars in spin-1 XY magnets, Phys. Rev. Lett. 123(14), 147201 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s scars in disordered spin chains, Phys. Rev. Lett. 124(18), 180604 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[33] |
C. J. Lin, V. Calvera, and T. H. Hsieh, Quantum many-body scar states in two-dimensional Rydberg atom arrays, Phys. Rev. B 101, 220304(R) (2020)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
F. M. Surace, M. Votto, E. G. Lazo, A. Silva, M. Dalmonte, and G. Giudici, Exact many-body scars and their stability in constrained quantum chains, Phys. Rev. B 103(10), 104302 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[35] |
V. Karle, M. Serbyn, and A. A. Michailidis, Area-law entangled eigenstates from nullspaces of local Hamiltonians, Phys. Rev. Lett. 127(6), 060602 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[36] |
A. Udupa, S. Sur, S. Nandy, A. Sen, D. Sen, Weak universality, and quantum many-body scars, and anomalous infinite-temperature autocorrelations in a one-dimensional spin model with duality, Phys. Rev. B 108(21), 214430 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[37] |
J. W. Wang, X. F. Zhou, G. C. Guo, and Z. W. Zhou, Quantum many-body scar models in one-dimensional spin chains, Phys. Rev. B 109(12), 125102 (2024)
CrossRef
ADS
Google scholar
|
[38] |
K. Bull, I. Martin, and Z. Papić, Systematic construction of scarred many-body dynamics in 1D lattice models, Phys. Rev. Lett. 123(3), 030601 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[39] |
D. Banerjee and A. Sen, Quantum scars from zero modes in an Abelian lattice gauge theory on ladders, Phys. Rev. Lett. 126(22), 220601 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[40] |
S. Biswas, D. Banerjee, and A. Sen, Scars from protected zero modes and beyond in U(1) quantum link and quantum dimer models, SciPost Phys. 12(5), 148 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[41] |
I. Sau, P. Stornati, D. Banerjee, and A. Sen, Sublattice scars and beyond in two-dimensional U(1) quantum link lattice gauge theories, Phys. Rev. D 109(3), 034519 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
B. Mukherjee, S. Nandy, A. Sen, D. Sen, and K. Sengupta, Collapse and revival of quantum many-body scars via Floquet engineering, Phys. Rev. B 101(24), 245107 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
B. Mukherjee, A. Sen, D. Sen, and K. Sengupta, Dynamics of the vacuum state in a periodically driven Rydberg chain, Phys. Rev. B 102(7), 075123 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[44] |
K. Mizuta, K. Takasan, and N. Kawakami, Exact Floquet quantum many-body scars under Rydberg blockade, Phys. Rev. Res. 2(3), 033284 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[45] |
T. Iadecola and S. Vijay, Nonergodic quantum dynamics from deformations of classical cellular automata, Phys. Rev. B 102(18), 180302 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[46] |
S. Sugiura, T. Kuwahara, and K. Saito, Many-body scar state intrinsic to periodically driven system, Phys. Rev. Res. 3(1), L012010 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[47] |
P. G. Rozon, M. J. Gullans, and K. Agarwal, Constructing quantum many-body scar Hamiltonians from Floquet automata, Phys. Rev. B 106(18), 184304 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[48] |
H. K. Park and S. Lee, Subharmonic fidelity revival in a driven PXP model, Phys. Rev. B 107(20), 205142 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[49] |
D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D. Lukin, Controlling quantum many-body dynamics in driven Rydberg atom arrays, Science 371(6536), 1355 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[50] |
P. N. Jepsen, Y. K. E. Lee, H. Lin, I. Dimitrova, Y. Margalit, W. W. Ho, and W. Ketterle, Long-lived phantom helix states in Heisenberg quantum magnets, Nat. Phys. 18(8), 899 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[51] |
G. X. Su, H. Sun, A. Hudomal, J. Y. Desaules, Z. Y. Zhou, B. Yang, J. C. Halimeh, Z. S. Yuan, Z. Papić, and J. W. Pan, Observation of many-body scarring in a Bose–Hubbard quantum simulator, Phys. Rev. Res. 5(2), 023010 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[52] |
W. Buijsman, Number of zero-energy eigenstates in the PXP model, Phys. Rev. B 106(4), 045104 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[53] |
P. Brighi, M. Ljubotina, and M. Serbyn, Hilbert space fragmentation and slow dynamics in particle-conserving quantum East models, SciPost Phys. 15, 093 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[54] |
P. Brighi and M. Ljubotina, Anomalous transport in the kinetically constrained quantum East–West model, Phys. Rev. B 110(10), L100304 (2024)
CrossRef
ADS
Google scholar
|
[55] |
M. Schecter and T. Iadecola, Many-body spectral reflection symmetry and protected infinite-temperature degeneracy, Phys. Rev. B 98(3), 035139 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[56] |
C. J. Lin and O. I. Motrunich, Exact quantum many-body scar states in the Rydberg-blockaded atom chain, Phys. Rev. Lett. 122(17), 173401 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[57] |
M. Inui, S. A. Trugman, and E. Abrahams, Unusual properties of midband states in systems with off-diagonal disorder, Phys. Rev. B 49(5), 3190 (1994)
CrossRef
ADS
Google scholar
|
[58] |
A. Soori and D. Sen, Nonadiabatic charge pumping by oscillating potentials in one dimension: Results for infinite system and finite ring, Phys. Rev. B 82(11), 115432 (2010)
CrossRef
ADS
Google scholar
|
[59] |
A. Sen, D. Sen, and K. Sengupta, Analytic approaches to periodically driven closed quantum systems: methods and applications, J. Phys.: Condens. Matter 33(44), 443003 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[60] |
L. Zhang, Y. Ke, L. Lin, and C. Lee, Floquet engineering of Hilbert space fragmentation in Stark lattices, Phys. Rev. B 109(18), 184313 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[61] |
L. D’Alessio and M. Rigol, Long-time behavior of isolated periodically driven interacting lattice systems, Phys. Rev. X 4(4), 041048 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[62] |
P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Many-body localization in periodically driven systems, Phys. Rev. Lett. 114(14), 140401 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[63] |
D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71(9), 1291 (1993)
CrossRef
ADS
Google scholar
|
[64] |
L. F. Santos and M. Rigol, Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization, Phys. Rev. E 81(3), 036206 (2010)
CrossRef
ADS
Google scholar
|
[65] |
L. F. Santos and M. Rigol, Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems, Phys. Rev. E 82(3), 031130 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[66] |
B. Evrard, A. Pizzi, S. I. Mistakidis, and C. B. Dag, Quantum many-body scars from unstable periodic orbits, Phys. Rev. B 110(14), 144302 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[67] |
W. Liu, Y. Ke, B. Zhu, and C. Lee, Modulation-induced long-range magnon bound states in one-dimensional optical lattices, New J. Phys. 22(9), 093052 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[68] |
Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29(1), 209 (1992)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |