Zero-energy quantum many-body scar under emergent chiral symmetry and pseudo Hilbert space fragmentation

Li Zhang, Yongguan Ke, Chaohong Lee

Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044201.

PDF(3439 KB)
PDF(3439 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (4) : 044201. DOI: 10.15302/frontphys.2025.044201
RESEARCH ARTICLE

Zero-energy quantum many-body scar under emergent chiral symmetry and pseudo Hilbert space fragmentation

Author information +
History +

Abstract

Hilbert space fragmentation (HSF) is a mechanism for generating quantum many-body scar (QMBS), which provides a route to weakly break ergodicity. Many scarred systems possess an exponentially large number of zero-energy states due to the chiral symmetry induced bipartition of the Hilbert space. In this work, we study the QMBS phenomenology under the interplay between the chiral symmetry and pseudo HSF, where the Hilbert space is approximately fragmented into different blocks. We consider a model of tilted chain of interacting spinless fermions with periodically varying tunneling strength. At small tunneling strength, we analytically derive the resonance conditions under which the system is described by an effective model with chiral symmetry and pseudo HSF. We find that the interplay between the two gives rise to a highly localized zero-energy QMBS when the particle number is even. This zero-energy QMBS induces an unusual scarred dynamical phenomenon. Specifically, the fidelity from a simple initial state oscillates around a finite fixed value without decaying, instead of showing the typical decaying collapse and revival observed when the particle number is odd and in common scarred systems. We show that the signature of the unusual scarred dynamical behaviour can also be detected in the original driven system by measuring local observables. Our findings enrich the scar phenomenon and deepen the understanding of the relation between Hilbert space structure and QMBS.

Graphical abstract

Keywords

quantum thermalization / quantum many-body scars / Hilbert space fragmentation / Floquet systems

Cite this article

Download citation ▾
Li Zhang, Yongguan Ke, Chaohong Lee. Zero-energy quantum many-body scar under emergent chiral symmetry and pseudo Hilbert space fragmentation. Front. Phys., 2025, 20(4): 044201 https://doi.org/10.15302/frontphys.2025.044201

References

[1]
J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43(4), 2046 (1991)
CrossRef ADS Google scholar
[2]
M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50(2), 888 (1994)
CrossRef ADS Google scholar
[3]
M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, J. Phys. Math. Gen. 32(7), 1163 (1999)
CrossRef ADS Google scholar
[4]
M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452(7189), 854 (2008)
CrossRef ADS arXiv Google scholar
[5]
J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81(8), 082001 (2018)
CrossRef ADS arXiv Google scholar
[6]
M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core Bosons, Phys. Rev. Lett. 98(5), 050405 (2007)
CrossRef ADS Google scholar
[7]
R. Steinigeweg, J. Herbrych, and P. Prelovšek, Eigenstate thermalization within isolated spin-chain systems, Phys. Rev. E 87(1), 012118 (2013)
CrossRef ADS arXiv Google scholar
[8]
F. H. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable quantum spin chains, J. Stat. Mech. 2016(6), 064002 (2016)
CrossRef ADS arXiv Google scholar
[9]
P. Calabrese, F. H. Essler, and G. Mussardo, Introduction to “quantum integrability in out of equilibrium systems”, J. Stat. Mech. 2016(6), 064001 (2016)
CrossRef ADS Google scholar
[10]
L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. 2016(6), 064007 (2016)
CrossRef ADS arXiv Google scholar
[11]
I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting electrons in disordered wires: Anderson localization and low-T transport, Phys. Rev. Lett. 95(20), 206603 (2005)
CrossRef ADS Google scholar
[12]
D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys. 321(5), 1126 (2006)
CrossRef ADS Google scholar
[13]
R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015)
CrossRef ADS arXiv Google scholar
[14]
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91(2), 021001 (2019)
CrossRef ADS arXiv Google scholar
[15]
H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551(7682), 579 (2017)
CrossRef ADS arXiv Google scholar
[16]
C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić, Weak ergodicity breaking from quantum many-body scars, Nat. Phys. 14(7), 745 (2018)
CrossRef ADS Google scholar
[17]
C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, Z. Papić, Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, and breakdown of thermalization, and stability to perturbations, Phys. Rev. B 98(15), 155134 (2018)
CrossRef ADS arXiv Google scholar
[18]
W. Ho, S. Choi, H. Pichler, M. D. Lukin, Periodic orbits, and entanglement , and quantum many-body scars in constrained models: Matrix product state approach, Phys. Rev. Lett. 122(4), 040603 (2019)
CrossRef ADS arXiv Google scholar
[19]
A. A. Michailidis, C. J. Turner, Z. Papic, D. A. Abanin, and M. Serbyn, Slow quantum thermalization and many-body revivals from mixed phase space, Phys. Rev. X 10(1), 011055 (2020)
CrossRef ADS arXiv Google scholar
[20]
C. J. Turner, J. Y. Desaules, K. Bull, and Z. Papić, Correspondence principle for many-body scars in ultracold Rydberg atoms, Phys. Rev. X 11(2), 021021 (2021)
CrossRef ADS arXiv Google scholar
[21]
M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17(6), 675 (2021)
CrossRef ADS arXiv Google scholar
[22]
A. Chandran, T. Iadecola, V. Khemani, and R. Moessner, Quantum many-body scars: A quasiparticle perspective, Annu. Rev. Condens. Matter Phys. 14(1), 443 (2023)
CrossRef ADS arXiv Google scholar
[23]
P. Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann, Ergodicity breaking arising from Hilbert space fragmentation in dipole-conserving Hamiltonians, Phys. Rev. X 10(1), 011047 (2020)
CrossRef ADS arXiv Google scholar
[24]
H. Zhao, J. Vovrosh, F. Mintert, and J. Knolle, Quantum many-body scars in optical lattices, Phys. Rev. Lett. 124(16), 160604 (2020)
CrossRef ADS arXiv Google scholar
[25]
A. Hudomal, I. Vasić, N. Regnault, and Z. Papić, Quantum scars of bosons with correlated hopping, Commun. Phys. 3(1), 99 (2020)
CrossRef ADS arXiv Google scholar
[26]
J. Y. Desaules, A. Hudomal, C. J. Turner, and Z. Papić, Proposal for realizing quantum scars in the tilted 1D Fermi–Hubbard model, Phys. Rev. Lett. 126(21), 210601 (2021)
CrossRef ADS arXiv Google scholar
[27]
P. Zhang, H. Dong, Y. Gao, L. Zhao, J. Hao, J. Y. Desaules, Q. Guo, J. Chen, J. Deng, B. Liu, W. Ren, Y. Yao, X. Zhang, S. Xu, K. Wang, F. Jin, X. Zhu, B. Zhang, H. Li, C. Song, Z. Wang, F. Liu, Z. Papić, L. Ying, H. Wang, and Y. C. Lai, Many-body Hilbert space scarring on a superconducting processor, Nat. Phys. 19(1), 120 (2023)
CrossRef ADS arXiv Google scholar
[28]
Z. Guo, B. Liu, Y. Gao, A. Yang, J. Wang, J. Ma, and L. Ying, Origin of Hilbert-space quantum scars in unconstrained models, Phys. Rev. B 108(7), 075124 (2023)
CrossRef ADS Google scholar
[29]
S. Moudgalya, S. Rachel, B. A. Bernevig, and N. Regnault, Exact excited states of nonintegrable models, Phys. Rev. B 98(23), 235155 (2018)
CrossRef ADS arXiv Google scholar
[30]
S. Moudgalya, N. Regnault, B. A. Bernevig, Entanglement of exact excited states of Affleck–Kennedy–Lieb–Tasaki models: Exact results, and many-body scars, and violation of the strong eigenstate thermalization hypothesis, Phys. Rev. B 98(23), 235156 (2018)
CrossRef ADS arXiv Google scholar
[31]
M. Schecter and T. Iadecola, Weak ergodicity breaking and quantum many-body scars in spin-1 XY magnets, Phys. Rev. Lett. 123(14), 147201 (2019)
CrossRef ADS arXiv Google scholar
[32]
N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s scars in disordered spin chains, Phys. Rev. Lett. 124(18), 180604 (2020)
CrossRef ADS arXiv Google scholar
[33]
C. J. Lin, V. Calvera, and T. H. Hsieh, Quantum many-body scar states in two-dimensional Rydberg atom arrays, Phys. Rev. B 101, 220304(R) (2020)
CrossRef ADS arXiv Google scholar
[34]
F. M. Surace, M. Votto, E. G. Lazo, A. Silva, M. Dalmonte, and G. Giudici, Exact many-body scars and their stability in constrained quantum chains, Phys. Rev. B 103(10), 104302 (2021)
CrossRef ADS arXiv Google scholar
[35]
V. Karle, M. Serbyn, and A. A. Michailidis, Area-law entangled eigenstates from nullspaces of local Hamiltonians, Phys. Rev. Lett. 127(6), 060602 (2021)
CrossRef ADS arXiv Google scholar
[36]
A. Udupa, S. Sur, S. Nandy, A. Sen, D. Sen, Weak universality, and quantum many-body scars, and anomalous infinite-temperature autocorrelations in a one-dimensional spin model with duality, Phys. Rev. B 108(21), 214430 (2023)
CrossRef ADS arXiv Google scholar
[37]
J. W. Wang, X. F. Zhou, G. C. Guo, and Z. W. Zhou, Quantum many-body scar models in one-dimensional spin chains, Phys. Rev. B 109(12), 125102 (2024)
CrossRef ADS Google scholar
[38]
K. Bull, I. Martin, and Z. Papić, Systematic construction of scarred many-body dynamics in 1D lattice models, Phys. Rev. Lett. 123(3), 030601 (2019)
CrossRef ADS arXiv Google scholar
[39]
D. Banerjee and A. Sen, Quantum scars from zero modes in an Abelian lattice gauge theory on ladders, Phys. Rev. Lett. 126(22), 220601 (2021)
CrossRef ADS arXiv Google scholar
[40]
S. Biswas, D. Banerjee, and A. Sen, Scars from protected zero modes and beyond in U(1) quantum link and quantum dimer models, SciPost Phys. 12(5), 148 (2022)
CrossRef ADS arXiv Google scholar
[41]
I. Sau, P. Stornati, D. Banerjee, and A. Sen, Sublattice scars and beyond in two-dimensional U(1) quantum link lattice gauge theories, Phys. Rev. D 109(3), 034519 (2024)
CrossRef ADS arXiv Google scholar
[42]
B. Mukherjee, S. Nandy, A. Sen, D. Sen, and K. Sengupta, Collapse and revival of quantum many-body scars via Floquet engineering, Phys. Rev. B 101(24), 245107 (2020)
CrossRef ADS arXiv Google scholar
[43]
B. Mukherjee, A. Sen, D. Sen, and K. Sengupta, Dynamics of the vacuum state in a periodically driven Rydberg chain, Phys. Rev. B 102(7), 075123 (2020)
CrossRef ADS arXiv Google scholar
[44]
K. Mizuta, K. Takasan, and N. Kawakami, Exact Floquet quantum many-body scars under Rydberg blockade, Phys. Rev. Res. 2(3), 033284 (2020)
CrossRef ADS arXiv Google scholar
[45]
T. Iadecola and S. Vijay, Nonergodic quantum dynamics from deformations of classical cellular automata, Phys. Rev. B 102(18), 180302 (2020)
CrossRef ADS arXiv Google scholar
[46]
S. Sugiura, T. Kuwahara, and K. Saito, Many-body scar state intrinsic to periodically driven system, Phys. Rev. Res. 3(1), L012010 (2021)
CrossRef ADS arXiv Google scholar
[47]
P. G. Rozon, M. J. Gullans, and K. Agarwal, Constructing quantum many-body scar Hamiltonians from Floquet automata, Phys. Rev. B 106(18), 184304 (2022)
CrossRef ADS arXiv Google scholar
[48]
H. K. Park and S. Lee, Subharmonic fidelity revival in a driven PXP model, Phys. Rev. B 107(20), 205142 (2023)
CrossRef ADS arXiv Google scholar
[49]
D. Bluvstein, A. Omran, H. Levine, A. Keesling, G. Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N. Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V. Vuletić, and M. D. Lukin, Controlling quantum many-body dynamics in driven Rydberg atom arrays, Science 371(6536), 1355 (2021)
CrossRef ADS arXiv Google scholar
[50]
P. N. Jepsen, Y. K. E. Lee, H. Lin, I. Dimitrova, Y. Margalit, W. W. Ho, and W. Ketterle, Long-lived phantom helix states in Heisenberg quantum magnets, Nat. Phys. 18(8), 899 (2022)
CrossRef ADS arXiv Google scholar
[51]
G. X. Su, H. Sun, A. Hudomal, J. Y. Desaules, Z. Y. Zhou, B. Yang, J. C. Halimeh, Z. S. Yuan, Z. Papić, and J. W. Pan, Observation of many-body scarring in a Bose–Hubbard quantum simulator, Phys. Rev. Res. 5(2), 023010 (2023)
CrossRef ADS arXiv Google scholar
[52]
W. Buijsman, Number of zero-energy eigenstates in the PXP model, Phys. Rev. B 106(4), 045104 (2022)
CrossRef ADS arXiv Google scholar
[53]
P. Brighi, M. Ljubotina, and M. Serbyn, Hilbert space fragmentation and slow dynamics in particle-conserving quantum East models, SciPost Phys. 15, 093 (2023)
CrossRef ADS arXiv Google scholar
[54]
P. Brighi and M. Ljubotina, Anomalous transport in the kinetically constrained quantum East–West model, Phys. Rev. B 110(10), L100304 (2024)
CrossRef ADS Google scholar
[55]
M. Schecter and T. Iadecola, Many-body spectral reflection symmetry and protected infinite-temperature degeneracy, Phys. Rev. B 98(3), 035139 (2018)
CrossRef ADS arXiv Google scholar
[56]
C. J. Lin and O. I. Motrunich, Exact quantum many-body scar states in the Rydberg-blockaded atom chain, Phys. Rev. Lett. 122(17), 173401 (2019)
CrossRef ADS arXiv Google scholar
[57]
M. Inui, S. A. Trugman, and E. Abrahams, Unusual properties of midband states in systems with off-diagonal disorder, Phys. Rev. B 49(5), 3190 (1994)
CrossRef ADS Google scholar
[58]
A. Soori and D. Sen, Nonadiabatic charge pumping by oscillating potentials in one dimension: Results for infinite system and finite ring, Phys. Rev. B 82(11), 115432 (2010)
CrossRef ADS Google scholar
[59]
A. Sen, D. Sen, and K. Sengupta, Analytic approaches to periodically driven closed quantum systems: methods and applications, J. Phys.: Condens. Matter 33(44), 443003 (2021)
CrossRef ADS arXiv Google scholar
[60]
L. Zhang, Y. Ke, L. Lin, and C. Lee, Floquet engineering of Hilbert space fragmentation in Stark lattices, Phys. Rev. B 109(18), 184313 (2024)
CrossRef ADS arXiv Google scholar
[61]
L. D’Alessio and M. Rigol, Long-time behavior of isolated periodically driven interacting lattice systems, Phys. Rev. X 4(4), 041048 (2014)
CrossRef ADS arXiv Google scholar
[62]
P. Ponte, Z. Papić, F. Huveneers, and D. A. Abanin, Many-body localization in periodically driven systems, Phys. Rev. Lett. 114(14), 140401 (2015)
CrossRef ADS arXiv Google scholar
[63]
D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71(9), 1291 (1993)
CrossRef ADS Google scholar
[64]
L. F. Santos and M. Rigol, Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization, Phys. Rev. E 81(3), 036206 (2010)
CrossRef ADS Google scholar
[65]
L. F. Santos and M. Rigol, Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems, Phys. Rev. E 82(3), 031130 (2010)
CrossRef ADS arXiv Google scholar
[66]
B. Evrard, A. Pizzi, S. I. Mistakidis, and C. B. Dag, Quantum many-body scars from unstable periodic orbits, Phys. Rev. B 110(14), 144302 (2024)
CrossRef ADS arXiv Google scholar
[67]
W. Liu, Y. Ke, B. Zhu, and C. Lee, Modulation-induced long-range magnon bound states in one-dimensional optical lattices, New J. Phys. 22(9), 093052 (2020)
CrossRef ADS arXiv Google scholar
[68]
Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29(1), 209 (1992)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 12025509 and 12305048), Shenzhen Fundamental Research Project (Grant No. JCYJ20230808105009018), the National Key Research and Development Program of China (Grant No. 2022YFA1404104), and Guangdong Provincial Quantum Science Strategic Initiative (No. GDZX2305006). Y.K. is supported by the National Natural Science Foundation of China (Grant No. 12275365) and the Natural Science Foundation of Guangdong (Grant No. 2023A1515012099).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(3439 KB)

Accesses

Citations

Detail

Sections
Recommended

/