
Pressure induced enhancement of anharmonicity and optimization of thermoelectric properties in n-type SnS
Ning Wang, Jincheng Yue, Siqi Guo, Hui Zhang, Shuli Li, Manai Cui, Yanhui Liu, Tian Cui
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034206.
Pressure induced enhancement of anharmonicity and optimization of thermoelectric properties in n-type SnS
Pressure serves as a powerful approach to regulating the thermal conductivity of materials. By applying pressure, one can alter the lattice symmetry, atomic spacing, and phonon scattering mechanisms, thereby exerting a profound influence on thermal transport properties. SnS, sharing the same crystal structure as SnSe, has often been overlooked due to its higher lattice thermal conductivity. While extensive efforts have been dedicated to enhancing the power factor of SnS through doping, its thermal transport properties remain underexplored, limiting its potential as a thermoelectric material. In this study, we investigated the impact of pressure modulation on the thermoelectric performance of SnS. Remarkably, the application of negative pressure significantly enhanced its thermal transport characteristics, leading to a reduction in the lattice thermal conductivity (
hydrostatic pressure / thermoelectric materials / n-type SnS / anharmonicity / lattice thermal conductivity
Tab.1 The calculated bulk modulus |
Pressure (GPa) | B | G | E | B/G | | | | |
---|---|---|---|---|---|---|---|---|
−1 | 29.2 | 46.49 | 18.83 | 1.55 | 2148.83 | 11.39 | 4.03 | 4.36 |
0 | 36.3 | 56.58 | 22.8 | 1.59 | 2327.95 | 11.26 | 4.02 | 4.27 |
1 | 42.39 | 65.42 | 26.32 | 1.61 | 2468.34 | 11.16 | 4.01 | 4.21 |
Fig.4 Lattice thermal conductivity |
Fig.5 (a) The weighted phase space |
Tab.2 The calculated carrier effective masses |
Pressure | Carrier | | ||
---|---|---|---|---|
a | b | c | ||
−1 GPa | CBM | 0.145 | 0.129 | 0.157 |
CBM1 | 0.087 | 1.033 | 1.540 | |
0 GPa | CBM | 0.131 | 0.119 | 0.147 |
CBM1 | 0.079 | 0.945 | 1.787 | |
1 GPa | CBM | 0.073 | 0.891 | 1.939 |
CBM1 | 0.132 | 0.123 | 0.148 |
[1] |
J. W. Li, Z. Han, J. Yu, H. L. Zhuang, H. Hu, B. Su, H. Li, Y. Jiang, L. Chen, W. Liu, Q. Zheng, and J. F. Li, Wide-temperature-range thermoelectric n-type Mg3(Sb, Bi)2 with high average and peak ZT values, Nat. Commun. 14(1), 7428 (2023)
CrossRef
ADS
Google scholar
|
[2] |
F. Garmroudi, M. Parzer, A. Riss, C. Bourgès, S. Khmelevskyi, T. Mori, E. Bauer, and A. Pustogow, High thermoelectric performance in metallic NiAu alloys via interband scattering, Sci. Adv. 9(37), eadj1611 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[3] |
H. Zhu, W. Li, A. Nozariasbmarz, N. Liu, Y. Zhang, S. Priya, and B. Poudel, Half-Heusler alloys as emerging high power density thermoelectric cooling materials, Nat. Commun. 14(1), 3300 (2023)
CrossRef
ADS
Google scholar
|
[4] |
D. Liu, D. Wang, T. Hong, Z. Wang, Y. Wang, Y. Qin, L. Su, T. Yang, X. Gao, Z. Ge, B. Qin, and L. D. Zhao, Lattice plainification advances highly effective SnSe crystalline thermoelectrics, Science 380(6647), 841 (2023)
CrossRef
ADS
Google scholar
|
[5] |
J. Y. Liu, L. Chen, and L. M. Wu, Ag9GaSe6: High-pressure-induced Ag migration causes thermoelectric performance irreproducibility and elimination of such instability, Nat. Commun. 13(1), 2966 (2022)
CrossRef
ADS
Google scholar
|
[6] |
C. Yang, D. Souchay, M. Kneiß, M. Bogner, H. Wei, M. Lorenz, O. Oeckler, G. Benstetter, Y. Q. Fu, and M. Grundmann, Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film, Nat. Commun. 8(1), 16076 (2017)
CrossRef
ADS
Google scholar
|
[7] |
J. Yue, Y. Liu, W. Ren, S. Lin, C. Shen, H. K. Singh, T. Cui, T. Tadano, and H. Zhang, Role of atypical temperature-responsive lattice thermal transport on the thermoelectric properties of antiperovskites Mg3XN (X= P, As, Sb, Bi), Mater. Today Phys. 41, 101340 (2024)
CrossRef
ADS
Google scholar
|
[8] |
W. Liu, J. Hu, S. Zhang, M. Deng, C. G. Han, and Y. Liu, New trends, strategies and opportunities in thermoelectric materials: A perspective, Mater. Today Phys. 1, 50 (2017)
CrossRef
ADS
Google scholar
|
[9] |
O. Tregenza,J. Twelftree,C. Hulston, A review of thermoelectric generators for waste heat recovery in marine applications, Sustain. Energy Technol. Assess. 59, 103394 (2023)
|
[10] |
J. Yue, J. Zheng, J. Li, S. Guo, W. Ren, H. Liu, Y. Liu, and T. Cui, Ultralow glassy thermal conductivity and controllable, promising thermoelectric properties in crystalline O-CsCu5S3, ACS Appl. Mater. Interfaces 16(16), 20597 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
Z. Liu, J. Mao, S. Peng, B. Zhou, W. Gao, J. Sui, Y. Pei, and Z. Ren, Tellurium doped n-type Zintl Zr3Ni3Sb4 thermoelectric materials: Balance between carrier-scattering mechanism and bipolar effect, Mater. Today Phys. 2, 54 (2017)
CrossRef
ADS
Google scholar
|
[12] |
G. Rogl and P. Rogl, How nanoparticles can change the figure of merit, ZT, and mechanical properties of skutterudites, Mater. Today Phys. 3, 48 (2017)
CrossRef
ADS
Google scholar
|
[13] |
M. Hong, Z. G. Chen, L. Yang, T. C. Chasapis, S. D. Kang, Y. Zou, G. J. Auchterlonie, M. G. Kanatzidis, G. J. Snyder, and J. Zou, Enhancing the thermoelectric performance of (SnSe)1–xTex nanoplates through band engineering, J. Mater. Chem. A 5(21), 10713 (2017)
CrossRef
ADS
Google scholar
|
[14] |
C. C. Lin, R. Lydia, J. H. Yun, H. S. Lee, and J. S. Rhyee, Extremely low lattice thermal conductivity and point defect scattering of phonons in Ag-doped (SnSe)1–x(SnS)x compounds, Chem. Mater. 29(12), 5344 (2017)
CrossRef
ADS
Google scholar
|
[15] |
S. He, S. Lehmann, A. Bahrami, and K. Nielsch, Current state-of-the-art in the interface/surface modification of thermoelectric materials, Adv. Energy Mater. 11(37), 2101877 (2021)
CrossRef
ADS
Google scholar
|
[16] |
R. Yan, C. Shen, M. Widenmeyer, T. Luo, R. Winkler, E. Adabifiroozjaei, R. Xie, S. Yoon, E. Suard, L. Molina-Luna, H. Zhang, W. Xie, and A. Weidenkaff, The role of interstitial Cu on thermoelectric properties of ZrNiSn half-Heusler compounds, Mater. Today Phys. 33, 101049 (2023)
CrossRef
ADS
Google scholar
|
[17] |
T. Thonhauser, T. Scheidemantel, J. Sofo, J. Badding, and G. Mahan, Thermoelectric properties of Sb2Te3 under pressure and uniaxial stress, Phys. Rev. B 68(8), 085201 (2003)
CrossRef
ADS
Google scholar
|
[18] |
M. H. Hong, D. I. Shim, H. H. Cho, and H. H. Park, Effect of mesopore-induced strain/stress on the thermoelectric properties of mesoporous ZnO thin films, Appl. Surf. Sci. 446, 160 (2018)
CrossRef
ADS
Google scholar
|
[19] |
J. Cao, Đ. Dangić, J. D. Querales-Flores, S. Fahy, and I. Savić, Electron-phonon coupling and electronic thermoelectric properties of n-type PbTe driven near the soft-mode phase transition via lattice expansion, Phys. Rev. B 104(4), 045202 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
A. Zhang, Y. Cui, J. Yue, J. Li, Y. Pan, X. Chen, Y. Liu, and T. Cui, Pressure-induced enhancement of thermoelectric performance of CoP3 by the structural phase transition, Acta Mater. 248, 118773 (2023)
CrossRef
ADS
Google scholar
|
[21] |
M. Sun, G. Tang, B. Huang, Z. Chen, Y. J. Zhao, H. Wang, Z. Zhao, D. Chen, Q. Qian, and Z. Yang, Tailoring microstructure and electrical transportation through tensile stress in Bi2Te3 thermoelectric fibers, J. Materiomics 6(3), 467 (2020)
CrossRef
ADS
Google scholar
|
[22] |
L. Xu, Y. Zheng, and J. C. Zheng, Thermoelectric transport properties of PbTe under pressure, Phys. Rev. B 82(19), 195102 (2010)
CrossRef
ADS
Google scholar
|
[23] |
R. Cheng, X. Shen, S. Klotz, Z. Zeng, Z. Li, A. Ivanov, Y. Xiao, L. D. Zhao, F. Weber, and Y. Chen, Lattice dynamics and thermal transport of PbTe under high pressure, Phys. Rev. B 108(10), 104306 (2023)
CrossRef
ADS
Google scholar
|
[24] |
H. L. Kagdada, P. K. Jha, P. Śpiewak, and K. J. Kurzydłowski, Structural stability, dynamical stability, thermoelectric properties, and elastic properties of GeTe at high pressure, Phys. Rev. B 97(13), 134105 (2018)
CrossRef
ADS
Google scholar
|
[25] |
R. Moshwan, W. D. Liu, X. L. Shi, Y. P. Wang, J. Zou, and Z. G. Chen, Realizing high thermoelectric properties of SnTe via synergistic band engineering and structure engineering, Nano Energy 65, 104056 (2019)
CrossRef
ADS
Google scholar
|
[26] |
A. Rajbanshi, D. Duong, E. Thareja, W. A. Shelton, and R. Jin, Thermoelectric properties of SnSe and SnSe2 single crystals, Phys. Rev. Mater. 8(2), 023601 (2024)
CrossRef
ADS
Google scholar
|
[27] |
T. Lanigan-Atkins, S. Yang, J. L. Niedziela, D. Bansal, A. F. May, A. A. Puretzky, J. Lin, D. M. Pajerowski, T. Hong, S. Chi, G. Ehlers, and O. Delaire, Extended anharmonic collapse of phonon dispersions in SnS and SnSe, Nat. Commun. 11(1), 4430 (2020)
CrossRef
ADS
Google scholar
|
[28] |
R. Guo, X. Wang, Y. Kuang, and B. Huang, First-principles study of anisotropic thermoelectric transport properties of IV−VI semiconductor compounds SnSe and SnS, Phys. Rev. B 92(11), 115202 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
Z. Wang, D. Wang, Y. Qiu, J. He, and L. D. Zhao, Realizing high thermoelectric performance of polycrystalline SnS through optimizing carrier concentration and modifying band structure, J. Alloys Compd. 789, 485 (2019)
CrossRef
ADS
Google scholar
|
[30] |
Y. Qin, M. Xie, Y. Zhang, M. Wang, T. Xiong, Z. Wang, and T. Zhao, Reduced thermal conductivity and improved ZT of Cu-doped SnS-based bulk thermoelectric materials via compositing SnS nano-fiber strategy, Ceram. Int. 49(22), 34481 (2023)
CrossRef
ADS
Google scholar
|
[31] |
W. He, T. Hong, D. Wang, X. Gao, and L. D. Zhao, Low carrier concentration leads to high in-plane thermoelectric performance in n-type SnS crystals, Sci. China Mater. 64(12), 3051 (2021)
CrossRef
ADS
Google scholar
|
[32] |
Y. Gong, W. Dou, B. Lu, X. Zhang, H. Zhu, P. Ying, Q. Zhang, Y. Liu, Y. Li, X. Huang, M. F. Iqbal, S. Zhang, D. Li, Y. Zhang, H. Wu, and G. Tang, Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals, Nat. Commun. 15(1), 4231 (2024)
CrossRef
ADS
Google scholar
|
[33] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[34] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
CrossRef
ADS
Google scholar
|
[35] |
G. Kresse,J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
|
[36] |
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57(3), 1505 (1998)
CrossRef
ADS
Google scholar
|
[37] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef
ADS
Google scholar
|
[38] |
K. Berland,V. R. Cooper,K. Lee,E. Schröder,T. Thonhauser,P. Hyldgaard,B. I. Lundqvist, van der waals forces in density functional theory: A review of the vdW-DF method, Rep. Prog. Phys. 78(6), 066501 (2015)
|
[39] |
W. Cao, Z. Wang, L. Miao, J. Shi, and R. Xiong, Extremely anisotropic thermoelectric properties of SnSe under pressure, Energy Environ. Mater. 6(3), e12361 (2023)
CrossRef
ADS
Google scholar
|
[40] |
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef
ADS
Google scholar
|
[41] |
W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Shengbte: A solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun. 185(6), 1747 (2014)
CrossRef
ADS
Google scholar
|
[42] |
A. M. Ganose, J. Park, A. Faghaninia, R. Woods-Robinson, K. A. Persson, and A. Jain, Efficient calculation of carrier scattering rates from first principles, Nat. Commun. 12(1), 2222 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
H. Zhang, J. Yue, S. Ma, S. Guo, N. Wang, J. Li, C. Shen, Y. Liu, and T. Cui, Pressure-induced extreme anisotropic behavior of thermoelectric properties in crystalline β-CuSCN, J. Alloys Compd. 1008, 176643 (2024)
CrossRef
ADS
Google scholar
|
[44] |
C. Chang and L. D. Zhao, Anharmoncity and low thermal conductivity in thermoelectrics, Mater. Today Phys. 4, 50 (2018)
CrossRef
ADS
Google scholar
|
[45] |
U. Waghmare, N. Spaldin, H. C. Kandpal, R. Seshadri, First-principles indicators of metallicity, and cation off-centricity in the IV−VI rocksalt chalcogenides of divalent Ge, Sn, and Pb, Phys. Rev. B 67(12), 125111 (2003)
CrossRef
ADS
Google scholar
|
[46] |
B. Z. Sun, Z. Ma, C. He, and K. Wu, Enhanced thermoelectric performance of layered SnS crystals: The synergetic effect of temperature and carrier concentration, RSC Advances 5(69), 56382 (2015)
CrossRef
ADS
Google scholar
|
[47] |
J. Guan, Z. Zhang, M. Dou, J. Ji, Y. Song, J. Liu, Z. Li, and F. Wang, Thermoelectric properties of Bi-doped SnS: First-principle study, J. Phys. Chem. Solids 137, 109182 (2020)
CrossRef
ADS
Google scholar
|
[48] |
P. B. Allen, Anharmonic phonon quasiparticle theory of zero-point and thermal shifts in insulators: Heat capacity, bulk modulus, and thermal expansion, Phys. Rev. B 92(6), 064106 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[49] |
F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[50] |
J. Chung, A. McGaughey, and M. Kaviany, Role of phonon dispersion in lattice thermal conductivity modeling, J. Heat Transfer 126(3), 376 (2004)
CrossRef
ADS
Google scholar
|
[51] |
W. Xu, Q. Liu, X. Zhou, J. Lin, S. Lin, M. Lu, and J. Lin, Effects of stresses on the thermoelectric properties of In4Se3, J. Mater. Chem. C 12(14), 5062 (2024)
CrossRef
ADS
Google scholar
|
[52] |
Y. Kumagai,L. A. Burton,A. Walsh,F. Oba, Electronic structure and defect physics of tin sulfides: SnS, Sn2S3, and SnS2, Phys. Rev. Appl. 6(1), 014009 (2016)
|
[53] |
W. Albers, C. Haas, and F. Van der Maesen, The preparation and the electrical and optical properties of SnS crystals, J. Phys. Chem. Solids 15(3−4), 306 (1960)
CrossRef
ADS
Google scholar
|
[54] |
J. M. Buhmann and M. Sigrist, Thermoelectric effect of correlated metals: Band-structure effects and the breakdown of mott’s formula, Phys. Rev. B 88, 115128 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[55] |
J. Yuan, Y. Chen, and B. Liao, Lattice dynamics and thermal transport in semiconductors with anti-bonding valence bands, J. Am. Chem. Soc. 145(33), 18506 (2023)
CrossRef
ADS
Google scholar
|
[56] |
W. He, D. Wang, J. F. Dong, Y. Qiu, L. Fu, Y. Feng, Y. Hao, G. Wang, J. Wang, C. Liu, J. F. Li, J. He, and L. D. Zhao, Remarkable electron and phonon band structures lead to a high thermoelectric performance ZT>1 in earth-abundant and eco-friendly SnS crystals, J. Mater. Chem. A 6(21), 10048 (2018)
CrossRef
ADS
Google scholar
|
[57] |
W. He, R. Ang, and L. D. Zhao, Remarkable electron and phonon transports in low-cost SnS: A new promising thermoelectric material, Sci. China Mater. 65(5), 1143 (2022)
CrossRef
ADS
Google scholar
|
[58] |
L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508, 373 (2014)
CrossRef
ADS
Google scholar
|
[59] |
J. Yue, S. Guo, J. Li, J. Zhao, C. Shen, H. Zhang, Y. Liu, and T. Cui, Pressure-induced remarkable four-phonon interaction and enhanced thermoelectric conversion efficiency in CuInTe2, Mater. Today Phys. 39, 101283 (2023)
CrossRef
ADS
Google scholar
|
[60] |
S. Guo, J. Yue, J. Li, Y. Liu, and T. Cui, Novel room-temperature full-Heusler thermoelectric material Li2TlSb, Phys. Chem. Chem. Phys. 26(8), 6774 (2024)
CrossRef
ADS
Google scholar
|
[61] |
X. Duan, T. Wang, Z. Fu, J. Y. Yang, and L. Liu, Electron mobility in ordered β-(AlxGa1−x)2O3 alloys from first-principles, Appl. Phys. Lett. 121(4), 042103 (2022)
CrossRef
ADS
Google scholar
|
[62] |
Z. Li, H. Xie, Y. Xia, S. Hao, K. Pal, M. G. Kanatzidis, C. Wolverton, and X. Tang, Weak-bonding elements lead to high thermoelectric performance in BaSnS3 and SrSnS3: A first-principles study, Chem. Mater. 34(3), 1289 (2022)
CrossRef
ADS
Google scholar
|
[63] |
A. H. Reshak, Fe2MnSixGe1−x: Influence thermoelectric properties of varying the germanium content, RSC Advances 4(74), 39565 (2014)
CrossRef
ADS
Google scholar
|
[64] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. E. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef
ADS
Google scholar
|
[65] |
B. Qin, D. Wang, X. Liu, Y. Qin, J. F. Dong, J. Luo, J. W. Li, W. Liu, G. Tan, X. Tang, J. F. Li, J. He, and L. D. Zhao, Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments, Science 373(6554), 556 (2021)
CrossRef
ADS
Google scholar
|
[66] |
W. Xu, Q. Liu, X. Zhou, J. Lin, S. Lin, M. Lu, and J. Lin, Effects of stresses on the thermoelectric properties of In4Se3, J. Mater. Chem. C 12(14), 5062 (2024)
CrossRef
ADS
Google scholar
|
[67] |
T. Thonhauser, Influence of negative pressure on thermoelectric properties of Sb2Te3, Solid State Commun. 129(4), 249 (2004)
CrossRef
ADS
Google scholar
|
Supplementary files
fop-25056-of-liuyanhui_suppl_1 (768 KB)
/
〈 |
|
〉 |