
Simulation of temporal second-order correlation function based on Monte Carlo algorithm
Yongsheng Hu, Tengfei Ma, Danqun Mao, Zhenyu Wang, Weihang Zhou, Hongxing Xu, Hongxing Dong, Wei Xie
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034204.
Simulation of temporal second-order correlation function based on Monte Carlo algorithm
The second-order correlation function of photons is the primary means to quantitatively describe the second-order coherence of a light field. In contrast to the stationary second-order correlation function, the temporal second-order correlation function can be used to study the second-order coherence of a transient light field. Based on the Monte Carlo algorithm, we carried out theoretical simulation on the temporal second-order correlation function from the perspective of photon statistics. By introducing experimental factors into the simulation, such as intensity jitter of the light field and time resolution of the instruments, the effects of imperfect experimental conditions on the measurement of second-order correlation function have also been elucidated. Our results provide theoretical guidance and analysis methods for experimental measurements on the second-order coherence of light fields.
temporal second-order correlation function / Monte Carlo algorithm / autocorrelation / cross-correlation
Fig.1 Experimental setup for the measurement of second-order correlation function. (a) Schematic diagram for HBT experiments. TCSPC refers to time-correlated single photon counting. (b) Schematic diagram for the measurement of second-order correlation function using streak cameras. The streak camera has a picosecond time resolution and can record the time of each photon arriving at the streak camera. Based on the transverse scanning capability, photon emission events for a series of excitation pulses can be recorded within one streak image, thus improving the detection and calculation efficiency. |
Fig.2 Autocorrelation photon detection events simulated by Monte Carlo algorithm. (a, b) Simulation results for anti-bunching light field. (c, d) Results for coherent light field. (e, f) Results for bunching light field. (a), (c) and (e) show the zero-delay autocorrelation function |
Fig.3 Cross-correlation photon detection events simulated by Monte Carlo algorithm. (a, b) Intensity autocorrelation function |
Fig.5 Effects of coherence time of the bunching light field and time resolution on the measurement of the second-order correlation function. (a) Second order correlation function |
[1] |
M. O. Scully,M. S. Zubairy, Quantum Optics, Cambridge University Press, 1997
|
[2] |
K. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Photon blockade in an optical cavity with one trapped atom, Nature 436(7047), 87 (2005)
CrossRef
ADS
Google scholar
|
[3] |
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Electrically driven single-photon source, Science 295(5552), 102 (2002)
CrossRef
ADS
Google scholar
|
[4] |
P. Rabl, Photon blockade effect in optomechanical systems, Phys. Rev. Lett. 107(6), 063601 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
K. Wu, W. Zhong, G. Cheng, and A. Chen, Phase-controlled multimagnon blockade and magnon-induced tunneling in a hybrid superconducting system, Phys. Rev. A 103(5), 052411 (2021)
CrossRef
ADS
Google scholar
|
[6] |
B. Sun,M. P. Edgar,R. Bowman,L. E. Vittert,S. Welsh, A. Bowman,M. J. Padgett, 3D computational imaging with single-pixel detectors, Science 340(6134), 844 (2013)
|
[7] |
D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, Observation of two-photon “ghost” interference and diffraction, Phys. Rev. Lett. 74(18), 3600 (1995)
CrossRef
ADS
Google scholar
|
[8] |
A. Madsen, T. Seydel, M. Sprung, C. Gutt, M. Tolan, and G. Grübel, Capillary waves at the transition from propagating to overdamped behavior, Phys. Rev. Lett. 92(9), 096104 (2004)
CrossRef
ADS
Google scholar
|
[9] |
G. Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, and T. Stöferle, Superfluorescence from lead halide perovskite quantum dot superlattices, Nature 563(7733), 671 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
C. Zhu, S. C. Boehme, L. G. Feld, A. Moskalenko, D. N. Dirin, R. F. Mahrt, T. Stöferle, M. I. Bodnarchuk, A. L. Efros, P. C. Sercel, M. V. Kovalenko, and G. Rainò, Single-photon superradiance in individual caesium lead halide quantum dots, Nature 626(7999), 535 (2024)
CrossRef
ADS
Google scholar
|
[11] |
S. Baryshev, A. Zasedatelev, H. Sigurdsson, I. Gnusov, J. D. Töpfer, A. Askitopoulos, and P. G. Lagoudakis, Engineering photon statistics in a spinor polariton condensate, Phys. Rev. Lett. 128(8), 087402 (2022)
CrossRef
ADS
Google scholar
|
[12] |
V. Temnov and U. Woggon, Photon statistics in the cooperative spontaneous emission, Opt. Express 17(7), 5774 (2009)
CrossRef
ADS
Google scholar
|
[13] |
C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, Semiconductor model for quantum-dot-based microcavity lasers, Phys. Rev. A 75(1), 013803 (2007)
CrossRef
ADS
Google scholar
|
[14] |
W. Chow, F. Jahnke, and C. Gies, Emission properties of nanolasers during the transition to lasing, Light Sci. Appl. 3(8), e201 (2014)
CrossRef
ADS
Google scholar
|
[15] |
A. Auffèves, D. Gerace, S. Portolan, A. Drezet, and M. França Santos, Few emitters in a cavity: From cooperative emission to individualization, New J. Phys. 13(9), 093020 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[16] |
S. Ritter, P. Gartner, C. Gies, and F. Jahnke, Emission properties and photon statistics of a single quantum dot laser, Opt. Express 18(10), 9909 (2010)
CrossRef
ADS
Google scholar
|
[17] |
Y. Hu, D. Mao, L. Chen, Y. Guan, L. Zhang, H. Dong, H. Xu, W. Xie, and Z. Sun, Cavity-enhanced superfluorescence stimulates coherent energy transfer in a perovskite quantum dot superlattice, Laser Photonics Rev. 18(12), 2400650 (2024)
CrossRef
ADS
Google scholar
|
[18] |
R. H. Brown and R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177(4497), 27 (1956)
CrossRef
ADS
Google scholar
|
[19] |
M. Aßmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, Higher-order photon bunching in a semiconductor microcavity, Science 325(5938), 297 (2009)
CrossRef
ADS
Google scholar
|
[20] |
J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, Direct observation of correlations between individual photon emission events of a microcavity laser, Nature 460(7252), 245 (2009)
CrossRef
ADS
Google scholar
|
[21] |
M. Aßmann, F. Veit, J. S. Tempel, T. Berstermann, H. Stolz, M. van der Poel, J. M. Hvam, and M. Bayer, Measuring the dynamics of second-order photon correlation functions inside a pulse with picosecond time resolution, Opt. Express 18(19), 20229 (2010)
CrossRef
ADS
Google scholar
|
[22] |
F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers, Nat. Commun. 7(1), 11540 (2016)
CrossRef
ADS
Google scholar
|
[23] |
V. Sala, F. Marsault, M. Wouters, E. Galopin, I. Sagnes, A. Lemaître, J. Bloch, and A. Amo, Stochastic precession of the polarization in a polariton laser, Phys. Rev. B 93(11), 115313 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
B. Berger, D. Schmidt, X. Ma, S. Schumacher, C. Schneider, S. Höfling, and M. Aßmann, Formation dynamics of exciton-polariton vortices created by nonresonant annular puming, Phys. Rev. B 101(24), 245309 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[25] |
J. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183(8), 1760 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
Z. Shen, S. Sukhov, A. Dogariu, and Monte Carlo method to model optical coherence propagahean, Sergeytion in random media, J. Opt. Soc. Am. A 34(12), 2189 (2017)
CrossRef
ADS
Google scholar
|
[27] |
H. Shan, J. C. Drawer, M. Sun, C. Anton-Solanas, M. Esmann, K. Yumigeta, K. Watanabe, T. Taniguchi, S. Tongay, S. Höfling, I. Savenko, and C. Schneider, Second-order temporal coherence of polariton lasers based on an atomically thin crystal in a microcavity, Phys. Rev. Lett. 131(20), 206901 (2023)
CrossRef
ADS
arXiv
Google scholar
|
/
〈 |
|
〉 |