Prediction of flat bands in a ternary intermetallic electride LaCoSi

Pengcheng Ma, Hongrun Zhen, Quanxing Wei, Yi Zhou, Peng Wang, Da Chen, Zhiping Yin, Tian Cui, Guangwei Wang, Dong Chen, Zhonghao Liu

Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034202.

PDF(3397 KB)
PDF(3397 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034202. DOI: 10.15302/frontphys.2025.034202
RESEARCH ARTICLE

Prediction of flat bands in a ternary intermetallic electride LaCoSi

Author information +
History +

Abstract

Paramagnetic LaCoSi, a ternary intermetallic electride, consists of CoSi blocks separated by two layers of La atoms. Its structure is similar to that of the widely studied 111 system of iron-based superconductors. Utilizing angle-resolved photoemission spectroscopy and first-principles calculations, we demonstrate the existence of linear bands and flat bands mainly originating from the eg orbitals of Co 3d states near the Fermi energy. The anomalous scattering rate of the linear bands varies linearly with the binding energy. The flat band above the Fermi energy indicated by the calculations could be modulated by substitutions and pressure to induce new ordered quantum phases, such as magnetism and superconductivity. Our findings reveal flat-band physics in electrides.

Graphical abstract

Keywords

electronic structure / flat bands / ARPES / electride

Cite this article

Download citation ▾
Pengcheng Ma, Hongrun Zhen, Quanxing Wei, Yi Zhou, Peng Wang, Da Chen, Zhiping Yin, Tian Cui, Guangwei Wang, Dong Chen, Zhonghao Liu. Prediction of flat bands in a ternary intermetallic electride LaCoSi. Front. Phys., 2025, 20(3): 034202 https://doi.org/10.15302/frontphys.2025.034202

References

[1]
H. Tasaki, From Nagaoka’s ferromagnetism to flat-band ferromagnetism and beyond: An introduction to ferromagnetism in the Hubbard model, Prog. Theor. Phys. 99(4), 489 (1998)
CrossRef ADS Google scholar
[2]
T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional quantum Hall states at zero magnetic field, Phys. Rev. Lett. 106(23), 236804 (2011)
CrossRef ADS arXiv Google scholar
[3]
K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Nearly flatbands with nontrivial topology, Phys. Rev. Lett. 106(23), 236803 (2011)
CrossRef ADS arXiv Google scholar
[4]
E. Tang, J. W. Mei, and X. G. Wen, High-temperature fractional quantum Hall states, Phys. Rev. Lett. 106(23), 236802 (2011)
CrossRef ADS arXiv Google scholar
[5]
G. R. Stewart, Heavy-fermion systems, Rev. Mod. Phys. 56(4), 755 (1984)
CrossRef ADS Google scholar
[6]
Z. Lin, J. H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li, Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q. Lu, J. H. Cho, C. Zeng, and Z. Zhang, Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices, Phys. Rev. Lett. 121(9), 096401 (2018)
CrossRef ADS Google scholar
[7]
J. Yin, S. S. Zhang, H. Li, K. Jiang, G. Chang, B. Zhang, B. Lian, C. Xiang, I. Belopolski, H. Zheng, T. A. Cochran, S. Y. Xu, G. Bian, K. Liu, T. R. Chang, H. Lin, Z. Y. Lu, Z. Wang, S. Jia, W. Wang, and M. Z. Hasan, Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet, Nature 562(7725), 91 (2018)
CrossRef ADS arXiv Google scholar
[8]
Y. Zhang, H. Lu, X. Zhu, S. Tan, W. Feng, Q. Liu, W. Zhang, Q. Chen, Y. Liu, X. Luo, D. Xie, L. Luo, Z. Zhang, X. Lai, and E mergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2, Sci. Adv. 4(1), eaao6791 (2018)
CrossRef ADS Google scholar
[9]
J. X. Yin, S. S. Zhang, G. Chang, Q. Wang, S. S. Tsirkin, Z. Guguchia, B. Lian, H. Zhou, K. Jiang, I. Belopolski, N. Shumiya, D. Multer, M. Litskevich, T. A. Cochran, H. Lin, Z. Wang, T. Neupert, S. Jia, H. Lei, and M. Z. Hasan, Negative flat band magnetism in a spin–orbit-coupled correlated Kagome magnet, Nat. Phys. 15(5), 443 (2019)
CrossRef ADS arXiv Google scholar
[10]
M. Kang, L. Ye, S. Fang, J. S. You, A. Levitan, M. Han, J. I. Facio, C. Jozwiak, A. Bostwick, E. Rotenberg, M. K. Chan, R. D. McDonald, D. Graf, K. Kaznatcheev, E. Vescovo, D. C. Bell, E. Kaxiras, J. van den Brink, M. Richter, M. P. Ghimire, J. G. Checkelsky, and R. Comin, Dirac fermions and flat bands in the ideal kagome metal FeSn, Nat. Mater. 19(2), 163 (2020)
CrossRef ADS arXiv Google scholar
[11]
Z. Liu, M. Li, Q. Wang, G. Wang, C. Wen, K. Jiang, X. Lu, S. Yan, Y. Huang, D. Shen, J. X. Yin, Z. Wang, Z. Yin, H. Lei, and S. Wang, Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn, Nat. Commun. 11(1), 4002 (2020)
CrossRef ADS arXiv Google scholar
[12]
M. Kang, S. Fang, L. Ye, H. C. Po, J. Denlinger, C. Jozwiak, A. Bostwick, E. Rotenberg, E. Kaxiras, J. G. Checkelsky, and R. Comin, Topological flat bands in frustrated kagome lattice CoSn, Nat. Commun. 11(1), 4004 (2020)
CrossRef ADS arXiv Google scholar
[13]
M. Li, Q. Wang, G. Wang, Z. Yuan, W. Song, R. Lou, Z. Liu, Y. Huang, Z. Liu, H. Lei, Z. Yin, and S. Wang, Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6, Nat. Commun. 12(1), 3129 (2021)
CrossRef ADS Google scholar
[14]
Z. Liu, N. Zhao, Q. Yin, C. Gong, Z. Tu, M. Li, W. Song, Z. Liu, D. Shen, Y. Huang, K. Liu, H. Lei, and S. Wang, Charge-density-wave-induced bands renormalization and energy gaps in a kagome superconductor RbV3Sb5, Phys. Rev. X 11(4), 041010 (2021)
CrossRef ADS arXiv Google scholar
[15]
A. Julku, S. Peotta, T. I. Vanhala, D. H. Kim, and P. Törmä, Geometric origin of superfluidity in the Lieb lattice flat band, Phys. Rev. Lett. 117(4), 045303 (2016)
CrossRef ADS arXiv Google scholar
[16]
A. Bhattacharya and B. Pal, Flat bands and nontrivial topological properties in an extended Lieb lattice, Phys. Rev. B 100(23), 235145 (2019)
CrossRef ADS arXiv Google scholar
[17]
B. Cui, X. Zheng, J. Wang, D. Liu, S. Xie, and B. Huang, Realization of Lieb lattice in covalentorganic frameworks with tunable topology and magnetism, Nat. Commun. 11(1), 66 (2020)
CrossRef ADS arXiv Google scholar
[18]
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at halffilling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
CrossRef ADS arXiv Google scholar
[19]
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
CrossRef ADS arXiv Google scholar
[20]
Z. Ma, S. Li, M. M. Xiao, Y. W. Zheng, M. Lu, H. Liu, J. H. Gao, and X. C. Xie, Moiré flat bands of twisted few-layer graphite, Front. Phys. 18(1), 13307 (2023)
CrossRef ADS arXiv Google scholar
[21]
L. de’ Medici, G. Giovannetti, and M. Capone, Selective Mott physics as a key to iron superconductors, Phys. Rev. Lett. 112(17), 177001 (2014)
CrossRef ADS arXiv Google scholar
[22]
Z. H. Liu, A. N. Yaresko, Y. Li, D. V. Evtushinsky, P. C. Dai, and S. V. Borisenko, Reduced electronic correlation effects in half substituted Ba(Fe1−xCox)2As2, Appl. Phys. Lett. 112(23), 232602 (2018)
CrossRef ADS Google scholar
[23]
Y. Li, Z. Yin, Z. Liu, W. Wang, Z. Xu, Y. Song, L. Tian, Y. Huang, D. Shen, D. L. Abernathy, J. L. Niedziela, R. A. Ewings, T. G. Perring, D. M. Pajerowski, M. Matsuda, P. Bourges, E. Mechthild, Y. Su, and P. Dai, Coexistence of ferromagnetic and stripe antiferromagnetic spin fluctuations in SrCo2As2, Phys. Rev. Lett. 122(11), 117204 (2019)
CrossRef ADS arXiv Google scholar
[24]
Y. Li, Z. Liu, Z. Xu, Y. Song, Y. Huang, D. Shen, N. Ma, A. Li, S. Chi, M. Frontzek, H. Cao, Q. Huang, W. Wang, Y. Xie, R. Zhang, Y. Rong, W. A. Shelton, D. P. Young, J. F. DiTusa, and P. Dai, Flat-band magnetism and helical magnetic order in Ni-doped SrCo2As2, Phys. Rev. B 100(9), 094446 (2019)
CrossRef ADS arXiv Google scholar
[25]
H. Mao, Z. Yin, Electronic structure, spin dynamics of ACo2As2 (A = Ba, and Sr, Ca), Phys. Rev. B 98(11), 115128 (2018)
CrossRef ADS arXiv Google scholar
[26]
Y. Nakajima, T. Metz, C. Eckberg, K. Kirshenbaum, A. Hughes, R. Wang, L. Wang, S. R. Saha, I. L. Liu, N. P. Butch, D. Campbell, Y. S. Eo, D. Graf, Z. Liu, S. V. Borisenko, P. Y. Zavalij, and J. Paglione, Quantum-critical scale invariance in a transition metal alloy, Commun. Phys. 3(1), 181 (2020)
CrossRef ADS arXiv Google scholar
[27]
Z. H. Liu, H. Mao, Y. Nakajima, J. Paglione, Z. Yin, and S. Borisenko, Flat band induced quantum criticality in a nonsuperconducting iron pnictide, Phys. Rev. B 109(7), 075103 (2024)
CrossRef ADS Google scholar
[28]
Y. Gong, J. Wu, M. Kitano, J. Wang, T. N. Ye, J. Li, Y. Kobayashi, K. Kishida, H. Abe, Y. Niwa, H. Yang, T. Tada, and H. Hosono, Ternary intermetallic LaCoSi as a catalyst for N2 activation, Nat. Catal. 1(3), 178 (2018)
CrossRef ADS Google scholar
[29]
Y. Gong, H. Li, J. Wu, X. Song, X. Yang, X. Bao, X. Han, M. Kitano, J. Wang, and H. Hosono, Unique catalytic mechanism for Ru-loaded ternary intermetallic electrides for ammonia synthesis, J. Am. Chem. Soc. 144(19), 8683 (2022)
CrossRef ADS Google scholar
[30]
Z. He, R. Huang, K. Zhou, Y. Liu, S. Guo, Y. Song, Z. Guo, S. Hu, L. He, Q. Huang, L. Li, J. Zhang, S. Wang, J. Guo, X. Xing, and J. Chen, Superconductivity in Co-layered LaCoSi, Inorg. Chem. 60(9), 6157 (2021)
CrossRef ADS Google scholar
[31]
D. R. Parker, M. J. Pitcher, P. J. Baker, I. Franke, T. Lancaster, S. J. Blundell, and S. J. Clarke, Structure, antiferromagnetism and superconductivity of the layered iron arsenide NaFeAs, Chem. Commun. (Camb.) (16), 2189 (2009)
CrossRef ADS Google scholar
[32]
Z. H. Liu, P. Richard, K. Nakayama, G. F. Chen, S. Dong, J. B. He, D. M. Wang, T. L. Xia, K. Umezawa, T. Kawahara, S. Souma, T. Sato, T. Takahashi, T. Qian, Y. Huang, N. Xu, Y. Shi, H. Ding, and S. C. Wang, Unconventional superconducting gap in NaFe0.95Co0.05As observed by angle-resolved photoemission spectroscopy, Phys. Rev. B 84(6), 064519 (2011)
CrossRef ADS arXiv Google scholar
[33]
K. Umezawa, Y. Li, H. Miao, K. Nakayama, Z. H. Liu, P. Richard, T. Sato, J. B. He, D. M. Wang, G. F. Chen, H. Ding, T. Takahashi, and S. C. Wang, Unconventional anisotropic s-wave superconducting gaps of the LiFeAs iron-pnictide superconductor, Phys. Rev. Lett. 108(3), 037002 (2012)
CrossRef ADS arXiv Google scholar
[34]
H. Tanida, K. Mitsumoto, Y. Muro, T. Fukuhara, Y. Kawamura, A. Kondo, K. Kindo, Y. Matsumoto, T. Namiki, T. Kuwai, and T. Matsumura, Successive phase transition at ambient pressure in CeCoSi: Single crystal studies, J. Phys. Soc. Jpn. 88(5), 054716 (2019)
CrossRef ADS Google scholar
[35]
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
CrossRef ADS Google scholar
[36]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[37]
B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, Covalent radii revisited, Dalton Trans. (21), 2832 (2008)
CrossRef ADS Google scholar
[38]
Z. H. Liu, P. Richard, N. Xu, G. Xu, Y. Li, X. C. Fang, L. L. Jia, G. F. Chen, D. M. Wang, J. B. He, T. Qian, J. P. Hu, H. Ding, S. C. Wang, T hree dimensionality, and o rbital characters of the Fermi surface in (Tl, Rb)yFe2−xSe2, Phys. Rev. Lett. 109(3), 037003 (2012)
CrossRef ADS arXiv Google scholar
[39]
Z. H. Liu, P. Richard, Y. Li, L. L. Jia, G. F. Chen, T. L. Xia, D. M. Wang, J. B. He, H. B. Yang, Z. H. Pan, T. Valla, P. D. Johnson, N. Xu, H. Ding, and S. C. Wang, Orbital characters and near two-dimensionality of Fermi surfaces in NaFe1−xCoxAs, Appl. Phys. Lett. 101(20), 202601 (2012)
CrossRef ADS Google scholar
[40]
H. Kumigashira, H. D. Kim, T. Ito, A. Ashihara, T. Takahashi, T. Suzuki, M. Nishimura, O. Sakai, Y. Kaneta, and H. Harima, High-resolution angle-resolved photoemission study of LaSb, Phys. Rev. B 58(12), 7675 (1998)
CrossRef ADS Google scholar
[41]
D. Takane, Z. Wang, S. Souma, K. Nakayama, C. X. Trang, T. Sato, T. Takahashi, and Y. Ando, Dirac-node arc in the topological line-node semimetal HfSiS, Phys. Rev. B 94(12), 121108 (2016)
CrossRef ADS arXiv Google scholar
[42]
Z. Liu, R. Lou, P. Guo, Q. Wang, S. Sun, C. Li, S. Thirupathaiah, A. Fedorov, D. Shen, K. Liu, H. Lei, and S. Wang, Experimental observation of Dirac nodal links in centrosymmetric semimetal TiB2, Phys. Rev. X 8(3), 031044 (2018)
CrossRef ADS arXiv Google scholar
[43]
L. L. Jia, Z. H. Liu, Y. P. Cai, T. Qian, X. P. Wang, H. Miao, P. Richard, Y. G. Zhao, Y. Li, D. M. Wang, J. B. He, M. Shi, G. F. Chen, H. Ding, and S. C. Wang, Observation of well-defined quasiparticles at a wide energy range in a quasi-two-dimensional system, Phys. Rev. B 90(3), 035133 (2014)
CrossRef ADS arXiv Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2022YFB3608000), the National Natural Science Foundation of China (NSFC) (Grant Nos. 12222413 and 12074041), the Natural Science Foundation of Shanghai (Grant Nos. 23ZR1482200 and 22ZR1473300), the Funding of Ningbo Yongjiang Talent Program, the Natural Science Foundation of Ningbo, Ningbo University (No. LJ2024003), the Postdoctoral Fellowship Program of CPSF (Grant No. GZC20240951), the Natural Science Foundation of Shandong Province (Grant Nos. ZR2021QA031, ZR2023MA068, and ZR2024QA213), the Qingdao Postdoctoral Project Funding (No. QDBSH20240102115), and the Fundamental Research Funds for the Central Universities (Grant No. 2243300003).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(3397 KB)

Accesses

Citations

Detail

Sections
Recommended

/