Implementation of an artificial neuron circuit model based on high speed AlN stacked threshold switching devices
Zhe Fan, Hong Fan, Chang He, Xiaobing Yan
Implementation of an artificial neuron circuit model based on high speed AlN stacked threshold switching devices
There has been a notable surge of interest in neuromorphic network computation, particularly concerning both non-volatile and volatile threshold devices. In this research, we have developed a multi-layer thin film architecture consisting of Al/AlN/Ag/AlN/Pt, which functions as a threshold switching (TS) device characterized by rapid switching speeds of 50 ns and minimal leakage current. We have effectively demonstrated biological neuron-like behaviors, such as threshold-driven spikes, all-or-nothing spikes, intensity-modulated frequency response, and frequency-modulated frequency response, through the deployment of a leaky integrate-and-fire (LIF) artificial neuron circuit, which surpasses earlier neuronal models. The resistance switching mechanism of the device is likely due to the migration of nitrogen vacancies in conjunction with silver filaments. This threshold switching device shows significant potential for applications in next-generation artificial neural networks.
volatile memristor / artificial neurons / AlN / high speed switching
[1] |
H. S. Wong and S. Salahuddin, Memory leads the way to better computing, Nat. Nanotechnol. 10(3), 191 (2015)
CrossRef
ADS
Google scholar
|
[2] |
X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu, J. Chen, and X. Y. Liu, Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing, Adv. Funct. Mater. 28(1), 1705320 (2018)
CrossRef
ADS
Google scholar
|
[3] |
D. Lee, M. Kwak, K. Moon, W. Choi, J. Park, J. Yoo, J. Song, S. Lim, C. Sung, W. Banerjee, and H. Hwang, Various threshold switching devices for integrate and fire neuron applications, Adv. Electron. Mater. 5(9), 1800866 (2019)
CrossRef
ADS
Google scholar
|
[4] |
K. Wang, Q. Hu, B. Gao, Q. Lin, F. W. Zhuge, D. Y. Zhang, L. Wang, Y. H. He, R. H. Scheicher, H. Tong, and X. S. Miao, Threshold switching memristor-based stochastic neurons for probabilistic computing, Mater. Horiz. 8(2), 619 (2021)
CrossRef
ADS
Google scholar
|
[5] |
L. Yuan, S. Liu, W. Chen, F. Fan, and G. Liu, Organic memory and memristors: From mechanisms, materials to devices, Adv. Electron. Mater. 7(11), 2100432 (2021)
CrossRef
ADS
Google scholar
|
[6] |
F. Zhou and Y. Chai, Near-sensor and in-sensor computing, Nat. Electron. 3(11), 664 (2020)
CrossRef
ADS
Google scholar
|
[7] |
Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G. L. Li, H. L. Xin, R. S. Williams, Q. Xia, and J. J. Yang, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nat. Mater. 16(1), 101 (2017)
CrossRef
ADS
Google scholar
|
[8] |
S. Liu, J. Zeng, Q. Chen, and G. Liu, Recent advances in halide perovskite memristors: From materials to applications, Front. Phys. 19(2), 23501 (2023)
CrossRef
ADS
Google scholar
|
[9] |
S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nanoscale memristor device as synapse in neuromorphic systems, Nano Lett. 10(4), 1297 (2010)
CrossRef
ADS
Google scholar
|
[10] |
L. Zhang, Z. Tang, D. Yao, Z. Fan, S. Hu, Q. J. Sun, X. G. Tang, Y. P. Jiang, X. Guo, M. Huang, G. Zhong, and J. Gao, Synaptic behaviors in flexible Au/WO/Pt/mica memristor for neuromorphic computing system, Mater. Today Phys. 23, 100650 (2022)
CrossRef
ADS
Google scholar
|
[11] |
H. M. Huang, R. Yang, Z. H. Tan, H. K. He, W. Zhou, J. Xiong, and X. Guo, Quasi-hodgkin-huxley neurons with leaky integrate-and-fire functions physically realized with memristive devices, Adv. Mater. 31(3), 1803849 (2019)
CrossRef
ADS
Google scholar
|
[12] |
M. D. Pickett,G. Medeiros-Ribeiro,R. S. Williams, A scalable neuristor built with Mott memristors, Nat. Mater. 12(2), 114 (2013)
|
[13] |
D. Dev, A. Krishnaprasad, M. S. Shawkat, Z. He, S. Das, D. Fan, H. S. Chung, Y. Jung, and Roy , MoS2-based threshold switching memristor for artificial neuron, IEEE Electron Device Lett. 41(6), 936 (2020)
CrossRef
ADS
Google scholar
|
[14] |
Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K. Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu, R. S. Williams, Q. Xia, and J. J. Yang, Fully memristive neural networks for pattern classification with unsupervised learning, Nat. Electron. 1(2), 137 (2018)
CrossRef
ADS
Google scholar
|
[15] |
T. Fu, X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, Z. Wang, Y. Zhuo, D. J. F. Walker, J. Joshua Yang, J. Chen, D. R. Lovley, and J. Yao, Bioinspired bio-voltage memristors, Nat. Commun. 11(1), 1861 (2020)
CrossRef
ADS
Google scholar
|
[16] |
X. Meng, C. Qin, X. Liang, G. Zhang, R. Chen, J. Hu, Z. Yang, J. Huo, L. Xiao, and S. Jia, Deep learning in two-dimensional materials: Characterization, prediction, and design, Front. Phys. 19(5), 53601 (2024)
CrossRef
ADS
Google scholar
|
[17] |
L. Kesper, M. Schmitz, M. G. H. Schulte, U. Berges, and C. Westphal, Revealing the nano-structures of low-dimensional germanium on Ag(1 1 0) using XPS and XPD, Appl. Nanosci. 12(7), 2151 (2022)
CrossRef
ADS
Google scholar
|
[18] |
A. Agrawal, X-Ray Photoelectron Spectroscopy: Principles, Techniques and Applications, Nova Science Publishers, Inc., 2023, p. 222
|
[19] |
Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, Y. Xie, and Q. Liu, Emerging of two-dimensional materials in novel memristor, Front. Phys. 17, 23204 (2022)
CrossRef
ADS
Google scholar
|
[20] |
X. Yan, X. Han, Z. Fang, Z. Zhao, Z. Zhang, J. Sun, Y. Shao, Y. Zhang, L. Wang, S. Sun, Z. Guo, X. Jia, Y. Zhang, Z. Guan, and T. Shi, Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing, Front. Phys. 18(6), 63301 (2023)
CrossRef
ADS
Google scholar
|
[21] |
J. Yang, Z. Jian, Z. Wang, J. Zhao, Z. Zhou, Y. Sun, M. Hao, L. Wang, P. Liu, J. Wang, Y. Pei, Z. Zhao, W. Wang, and X. Yan, HfAlO-based ferroelectric memristors for artificial synaptic plasticity, Front. Phys. 18(6), 63603 (2023)
CrossRef
ADS
Google scholar
|
[22] |
X. Yan,Z. Zhang,Z. Guan,Z. Fang,Y. Zhang, J. Zhao,J. Sun,X. Han,J. Niu,L. Wang, X. Jia,Y. Shao,Z. Zhao,Z. Guo,B. Bai, A high-speed true random number generator based on Ag/SiNx/n-Si memristor, Front. Phys. 19(1), 13202 (2023)
|
[23] |
C. Caidie, T. P. Jun, C. Yimao, Y. Xiaoqin, Y. Yuchao, and H. Ru, In-memory computing with emerging nonvolatile memory devices, Sci. China Inf. Sci. 64(12), 221402 (2021)
CrossRef
ADS
Google scholar
|
[24] |
S. A. Chekol,F. Cuppers,R. Waser, S. Hoffmann-Eifert, An Ag/HfO2/Pt threshold switching device with an ultra-low leakage (< 10 fA), high on/off ratio (> 1011), and low threshold voltage (< 0.2 V) for energy-efficient neuromorphic computing, in: 2021 IEEE International Memory Workshop (IMW), 2021, pp 1–4
|
[25] |
Y. F. Lu, Y. Li, H. Li, T. Q. Wan, X. Huang, Y. H. He, and X. Miao, Low-power artificial neurons based on Ag/TiN/HfAlOx/Pt threshold switching memristor for neuromorphic computing, IEEE Electron Device Lett. 41(8), 1245 (2020)
CrossRef
ADS
Google scholar
|
[26] |
Y. F. Lu,H. Y. Li,Y. Li,L. H. Li,T. Q. Wan, L. Yang,W. B. Zuo,K. H. Xue,X. S. Miao, A high-performance Ag/TiN/HfOx/HfOy/HfOx/Pt diffusive memristor for calibration-free true random number generator, Adv. Electron. Mater. 8(9), 2200202 (2022)
|
[27] |
Y. Sun,X. Zhao,C. Song,K. Xu,Y. Xi, J. Yin,Z. Wang,X. Zhou,X. Chen,G. Shi, H. Lv,Q. Liu,F. Zeng,X. Zhong,H. Wu, M. Liu,F. Pan, Performance-enhancing selector via symmetrical multilayer design, Adv. Funct. Mater. 29(13) (2019)
|
[28] |
X. Zhao, J. Ma, X. Xiao, Q. Liu, L. Shao, D. Chen, S. Liu, J. Niu, X. Zhang, Y. Wang, R. Cao, W. Wang, Z. Di, H. Lv, S. Long, and M. Liu, Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects, Adv. Mater. 30(14), 1705193 (2018)
CrossRef
ADS
Google scholar
|
[29] |
F. Zahoor, F. A. Hussin, U. B. Isyaku, S. Gupta, F. A. Khanday, A. Chattopadhyay, and H. Abbas, Resistive random access memory: Introduction to device mechanism, materials and application to neuromorphic computing, Nanoscale Res. Lett. 18(1), 36 (2023)
CrossRef
ADS
Google scholar
|
[30] |
B. J. Choi, A. C. Torrezan, J. P. Strachan, P. G. Kotula, A. J. Lohn, M. J. Marinella, Z. Li, R. S. Williams, and J. J. Yang, High‐speed and low-energy nitride memristors, Adv. Funct. Mater. 26(29), 5290 (2016)
CrossRef
ADS
Google scholar
|
[31] |
S. A. Chekol, S. Menzel, R. W. Ahmad, R. Waser, and S. Hoffmann‐Eifert, Effect of the threshold kinetics on the filament relaxation behavior of Ag‐based diffusive memristors, Adv. Funct. Mater. 32(15), 2111242 (2022)
CrossRef
ADS
Google scholar
|
[32] |
H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, Z. Huo, L. Li, and M. Liu, Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology, Adv. Funct. Mater. 24(36), 5679 (2014)
CrossRef
ADS
Google scholar
|
[33] |
T. Guo, K. Pan, Y. Jiao, B. Sun, C. Du, J. P. Mills, Z. Chen, X. Zhao, L. Wei, Y. N. Zhou, and Y. A. Wu, Versatile memristor for memory and neuromorphic computing, Nanoscale Horiz. 7(3), 299 (2022)
CrossRef
ADS
Google scholar
|
[34] |
H. Chen, X. G. Tang, Z. Shen, W. T. Guo, Q. J. Sun, Z. Tang, and Y. P. Jiang, Emerging memristors and applications in reservoir computing, Front. Phys. 19(1), 13401 (2023)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |