Implementation of an artificial neuron circuit model based on high speed AlN stacked threshold switching devices

Zhe Fan, Hong Fan, Chang He, Xiaobing Yan

PDF(2452 KB)
PDF(2452 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034201. DOI: 10.15302/frontphys.2025.034201
RESEARCH ARTICLE

Implementation of an artificial neuron circuit model based on high speed AlN stacked threshold switching devices

Author information +
History +

Abstract

There has been a notable surge of interest in neuromorphic network computation, particularly concerning both non-volatile and volatile threshold devices. In this research, we have developed a multi-layer thin film architecture consisting of Al/AlN/Ag/AlN/Pt, which functions as a threshold switching (TS) device characterized by rapid switching speeds of 50 ns and minimal leakage current. We have effectively demonstrated biological neuron-like behaviors, such as threshold-driven spikes, all-or-nothing spikes, intensity-modulated frequency response, and frequency-modulated frequency response, through the deployment of a leaky integrate-and-fire (LIF) artificial neuron circuit, which surpasses earlier neuronal models. The resistance switching mechanism of the device is likely due to the migration of nitrogen vacancies in conjunction with silver filaments. This threshold switching device shows significant potential for applications in next-generation artificial neural networks.

Graphical abstract

Keywords

volatile memristor / artificial neurons / AlN / high speed switching

Cite this article

Download citation ▾
Zhe Fan, Hong Fan, Chang He, Xiaobing Yan. Implementation of an artificial neuron circuit model based on high speed AlN stacked threshold switching devices. Front. Phys., 2025, 20(3): 034201 https://doi.org/10.15302/frontphys.2025.034201

References

[1]
H. S. Wong and S. Salahuddin, Memory leads the way to better computing, Nat. Nanotechnol. 10(3), 191 (2015)
CrossRef ADS Google scholar
[2]
X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu, J. Chen, and X. Y. Liu, Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing, Adv. Funct. Mater. 28(1), 1705320 (2018)
CrossRef ADS Google scholar
[3]
D. Lee, M. Kwak, K. Moon, W. Choi, J. Park, J. Yoo, J. Song, S. Lim, C. Sung, W. Banerjee, and H. Hwang, Various threshold switching devices for integrate and fire neuron applications, Adv. Electron. Mater. 5(9), 1800866 (2019)
CrossRef ADS Google scholar
[4]
K. Wang, Q. Hu, B. Gao, Q. Lin, F. W. Zhuge, D. Y. Zhang, L. Wang, Y. H. He, R. H. Scheicher, H. Tong, and X. S. Miao, Threshold switching memristor-based stochastic neurons for probabilistic computing, Mater. Horiz. 8(2), 619 (2021)
CrossRef ADS Google scholar
[5]
L. Yuan, S. Liu, W. Chen, F. Fan, and G. Liu, Organic memory and memristors: From mechanisms, materials to devices, Adv. Electron. Mater. 7(11), 2100432 (2021)
CrossRef ADS Google scholar
[6]
F. Zhou and Y. Chai, Near-sensor and in-sensor computing, Nat. Electron. 3(11), 664 (2020)
CrossRef ADS Google scholar
[7]
Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G. L. Li, H. L. Xin, R. S. Williams, Q. Xia, and J. J. Yang, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nat. Mater. 16(1), 101 (2017)
CrossRef ADS Google scholar
[8]
S. Liu, J. Zeng, Q. Chen, and G. Liu, Recent advances in halide perovskite memristors: From materials to applications, Front. Phys. 19(2), 23501 (2023)
CrossRef ADS Google scholar
[9]
S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nanoscale memristor device as synapse in neuromorphic systems, Nano Lett. 10(4), 1297 (2010)
CrossRef ADS Google scholar
[10]
L. Zhang, Z. Tang, D. Yao, Z. Fan, S. Hu, Q. J. Sun, X. G. Tang, Y. P. Jiang, X. Guo, M. Huang, G. Zhong, and J. Gao, Synaptic behaviors in flexible Au/WO/Pt/mica memristor for neuromorphic computing system, Mater. Today Phys. 23, 100650 (2022)
CrossRef ADS Google scholar
[11]
H. M. Huang, R. Yang, Z. H. Tan, H. K. He, W. Zhou, J. Xiong, and X. Guo, Quasi-hodgkin-huxley neurons with leaky integrate-and-fire functions physically realized with memristive devices, Adv. Mater. 31(3), 1803849 (2019)
CrossRef ADS Google scholar
[12]
M. D. Pickett,G. Medeiros-Ribeiro,R. S. Williams, A scalable neuristor built with Mott memristors, Nat. Mater. 12(2), 114 (2013)
[13]
D. Dev, A. Krishnaprasad, M. S. Shawkat, Z. He, S. Das, D. Fan, H. S. Chung, Y. Jung, and Roy , MoS2-based threshold switching memristor for artificial neuron, IEEE Electron Device Lett. 41(6), 936 (2020)
CrossRef ADS Google scholar
[14]
Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K. Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu, R. S. Williams, Q. Xia, and J. J. Yang, Fully memristive neural networks for pattern classification with unsupervised learning, Nat. Electron. 1(2), 137 (2018)
CrossRef ADS Google scholar
[15]
T. Fu, X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, Z. Wang, Y. Zhuo, D. J. F. Walker, J. Joshua Yang, J. Chen, D. R. Lovley, and J. Yao, Bioinspired bio-voltage memristors, Nat. Commun. 11(1), 1861 (2020)
CrossRef ADS Google scholar
[16]
X. Meng, C. Qin, X. Liang, G. Zhang, R. Chen, J. Hu, Z. Yang, J. Huo, L. Xiao, and S. Jia, Deep learning in two-dimensional materials: Characterization, prediction, and design, Front. Phys. 19(5), 53601 (2024)
CrossRef ADS Google scholar
[17]
L. Kesper, M. Schmitz, M. G. H. Schulte, U. Berges, and C. Westphal, Revealing the nano-structures of low-dimensional germanium on Ag(1 1 0) using XPS and XPD, Appl. Nanosci. 12(7), 2151 (2022)
CrossRef ADS Google scholar
[18]
A. Agrawal, X-Ray Photoelectron Spectroscopy: Principles, Techniques and Applications, Nova Science Publishers, Inc., 2023, p. 222
[19]
Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, Y. Xie, and Q. Liu, Emerging of two-dimensional materials in novel memristor, Front. Phys. 17, 23204 (2022)
CrossRef ADS Google scholar
[20]
X. Yan, X. Han, Z. Fang, Z. Zhao, Z. Zhang, J. Sun, Y. Shao, Y. Zhang, L. Wang, S. Sun, Z. Guo, X. Jia, Y. Zhang, Z. Guan, and T. Shi, Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing, Front. Phys. 18(6), 63301 (2023)
CrossRef ADS Google scholar
[21]
J. Yang, Z. Jian, Z. Wang, J. Zhao, Z. Zhou, Y. Sun, M. Hao, L. Wang, P. Liu, J. Wang, Y. Pei, Z. Zhao, W. Wang, and X. Yan, HfAlO-based ferroelectric memristors for artificial synaptic plasticity, Front. Phys. 18(6), 63603 (2023)
CrossRef ADS Google scholar
[22]
X. Yan,Z. Zhang,Z. Guan,Z. Fang,Y. Zhang, J. Zhao,J. Sun,X. Han,J. Niu,L. Wang, X. Jia,Y. Shao,Z. Zhao,Z. Guo,B. Bai, A high-speed true random number generator based on Ag/SiNx/n-Si memristor, Front. Phys. 19(1), 13202 (2023)
[23]
C. Caidie, T. P. Jun, C. Yimao, Y. Xiaoqin, Y. Yuchao, and H. Ru, In-memory computing with emerging nonvolatile memory devices, Sci. China Inf. Sci. 64(12), 221402 (2021)
CrossRef ADS Google scholar
[24]
S. A. Chekol,F. Cuppers,R. Waser, S. Hoffmann-Eifert, An Ag/HfO2/Pt threshold switching device with an ultra-low leakage (< 10 fA), high on/off ratio (> 1011), and low threshold voltage (< 0.2 V) for energy-efficient neuromorphic computing, in: 2021 IEEE International Memory Workshop (IMW), 2021, pp 1–4
[25]
Y. F. Lu, Y. Li, H. Li, T. Q. Wan, X. Huang, Y. H. He, and X. Miao, Low-power artificial neurons based on Ag/TiN/HfAlOx/Pt threshold switching memristor for neuromorphic computing, IEEE Electron Device Lett. 41(8), 1245 (2020)
CrossRef ADS Google scholar
[26]
Y. F. Lu,H. Y. Li,Y. Li,L. H. Li,T. Q. Wan, L. Yang,W. B. Zuo,K. H. Xue,X. S. Miao, A high-performance Ag/TiN/HfOx/HfOy/HfOx/Pt diffusive memristor for calibration-free true random number generator, Adv. Electron. Mater. 8(9), 2200202 (2022)
[27]
Y. Sun,X. Zhao,C. Song,K. Xu,Y. Xi, J. Yin,Z. Wang,X. Zhou,X. Chen,G. Shi, H. Lv,Q. Liu,F. Zeng,X. Zhong,H. Wu, M. Liu,F. Pan, Performance-enhancing selector via symmetrical multilayer design, Adv. Funct. Mater. 29(13) (2019)
[28]
X. Zhao, J. Ma, X. Xiao, Q. Liu, L. Shao, D. Chen, S. Liu, J. Niu, X. Zhang, Y. Wang, R. Cao, W. Wang, Z. Di, H. Lv, S. Long, and M. Liu, Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects, Adv. Mater. 30(14), 1705193 (2018)
CrossRef ADS Google scholar
[29]
F. Zahoor, F. A. Hussin, U. B. Isyaku, S. Gupta, F. A. Khanday, A. Chattopadhyay, and H. Abbas, Resistive random access memory: Introduction to device mechanism, materials and application to neuromorphic computing, Nanoscale Res. Lett. 18(1), 36 (2023)
CrossRef ADS Google scholar
[30]
B. J. Choi, A. C. Torrezan, J. P. Strachan, P. G. Kotula, A. J. Lohn, M. J. Marinella, Z. Li, R. S. Williams, and J. J. Yang, High‐speed and low-energy nitride memristors, Adv. Funct. Mater. 26(29), 5290 (2016)
CrossRef ADS Google scholar
[31]
S. A. Chekol, S. Menzel, R. W. Ahmad, R. Waser, and S. Hoffmann‐Eifert, Effect of the threshold kinetics on the filament relaxation behavior of Ag‐based diffusive memristors, Adv. Funct. Mater. 32(15), 2111242 (2022)
CrossRef ADS Google scholar
[32]
H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, Z. Huo, L. Li, and M. Liu, Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology, Adv. Funct. Mater. 24(36), 5679 (2014)
CrossRef ADS Google scholar
[33]
T. Guo, K. Pan, Y. Jiao, B. Sun, C. Du, J. P. Mills, Z. Chen, X. Zhao, L. Wei, Y. N. Zhou, and Y. A. Wu, Versatile memristor for memory and neuromorphic computing, Nanoscale Horiz. 7(3), 299 (2022)
CrossRef ADS Google scholar
[34]
H. Chen, X. G. Tang, Z. Shen, W. T. Guo, Q. J. Sun, Z. Tang, and Y. P. Jiang, Emerging memristors and applications in reservoir computing, Front. Phys. 19(1), 13401 (2023)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Data availability

The data that support the findings of this study are available within the article.

Acknowledgements

This work was financially supported by the National Natural Science Foundation Joint Regional Innovation Development Project (Grant No. U23A20365), the National R&D Plan “Nano Frontier” Key Special Project (Grant No. 2021YFA1200502), the Cultivation Projects of National Major R&D Project (Grant No. 92164109), the National Natural Science Foundation of China (Grant Nos. 61874158, 62004056, and 62104058), the Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences (Grant No. XDB44000000-7), Hebei Basic Research Special Key Project (Grant No. F2021201045), the Support Program for the Top Young Talents of Hebei Province (Grant No. 70280011807), the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province (Grant No. SLRC2019018), the Interdisciplinary Research Program of Natural Science of Hebei University (No. DXK202101), the Institute of Life Sciences and Green Development (No. 521100311), the Natural Science Foundation of Hebei Province (Nos. F2022201054 and F2021201022), the Outstanding Young Scientific Research and Innovation Team of Hebei University (Grant No. 605020521001), the Special Support Funds for National High Level Talents (Grant No. 041500120001), the Advanced Talents Incubation Program of the Hebei University (Grant Nos. 521000981426, 521100221071, and 521000981363), High-level Talent Funding Program of Hebei Province(Grant No. B20231003), Yanzhao Young Science Project (Grant No. F2023201076), Science and Technology Project of Hebei Education Department (Grant Nos. QN2020178 and QN2021026), and Baoding Science and Technology Plan Project (Grant Nos. 2172P011 and 2272P014).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(2452 KB)

Accesses

Citations

Detail

Sections
Recommended

/