A world-record achievement in the 100-kilometer practical quantum secure direct communication rate

Jia-Wei Ying, Yu-Bo Sheng, Lan Zhou, Leong-Chuan Kwek

Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 033401.

PDF(813 KB)
Front. Phys. All Journals
PDF(813 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 033401. DOI: 10.15302/frontphys.2025.033401
VIEW & PERSPECTIVE

A world-record achievement in the 100-kilometer practical quantum secure direct communication rate

Author information +
History +

Cite this article

Download citation ▾
Jia-Wei Ying, Yu-Bo Sheng, Lan Zhou, Leong-Chuan Kwek. A world-record achievement in the 100-kilometer practical quantum secure direct communication rate. Front. Phys., 2025, 20(3): 033401 https://doi.org/10.15302/frontphys.2025.033401
Recently, Long et al. [1] at the Beijing Academy of Quantum Information Sciences, in collaboration with the partners, proposed the theory of one-way quantum secure direct communication (QSDC) and successfully developed a practical system. This achievement set a world record for long-distance stable transmission, demonstrating a rate of 2.38 kbps at a distance of 104.8 km over 168 hours.
QSDC was first proposed by Long and Liu in 2000 [2], with the goal of enabling secure and reliable communication over a quantum channel subject to both noise, loss, and eavesdropping [3-5]. It features characteristics such as eavesdropping detection, eavesdropping prevention, compatibility with existing networks, simplified management processes, and covert transmission [6], making it highly promising for next-generation secure communication [7]. The theory of QSDC has evolved rapidly, and many variants of the QSDC protocol have been proposed [8-27]. To mitigate vulnerabilities in quantum devices, researchers have developed innovative protocols including: (i) measurement-device-independent QSDC (MDI-QSDC) [9-11], which enhances security at detection nodes by outsourcing Bell-state measurements to untrusted third parties; (ii) reference-device-independent QSDC (RDI-QSDC) [12], which reduces reliance on receiving devices through statistical characterization of signals; (iii) passive-source QSDC [13-15], which eliminates source-side security vulnerabilities by avoiding active modulation operations; and (iv) device-independent QSDC (DI-QSDC) [16-19], which achieves unconditional security guarantees by verifying Bell inequality violations to circumvent assumptions about source and detector. In addition, quantum error-correcting codes have been integrated into QSDC frameworks [20], significantly improving robustness against channel noise. And many variants of the QSDC protocol [21-27] have been proposed to extend the family of QSDC. Meanwhile, experimental development [28, 29] of QSDC has advanced rapidly, gradually extending from long-distance fiber-based communication scenarios [30-35] to free-space communication [36] and networking [37, 38]. A latest experimental breakthrough [39] has successfully demonstrated a 300-kilometer fully-connected QSDC network, marking a crucial step toward transitioning QSDC from theoretical frameworks to practical long-distance large-scale quantum communication. Mature QSDC schemes enable the transmission of private information from sender to receiver by sending quantum states over a round-trip transmission [4, 40]. These schemes offer advantages such as eliminating the need for basis reconciliation, preventing information leakage before eavesdropping detection, and enabling quantum-integrated sensing and communication [41]. However, achieving 100 km QSDC requires transmitting quantum states over 200 km, and improving communication performance under device limitations remains challenging. These two comprehensive reviews [6, 42] provide valuable insights into the latest progress in QSDC.
In QSDC, how can we address the high losses caused by two-way transmission of quantum states? One solution is to use the one-way protocol [43-47]. Long et al. [1] proposed a one-way quasi-QSDC protocol for simultaneous transmission of information and key exchange (STIKE), which merges information transfer and key exchange within the same photonic quantum states. The protocol has the following key features: (i) One-way quantum state transmission. Privacy information can be transmitted with only a one-way transmission of quantum states between the communicating parties. (ii) Robustness against loss and noise. By integrating forward error correction coding and spreading spectrum, STIKE mitigates channel losses (e.g., 20 dB over 100 km of fiber) and errors. The spreading spectrum technique dynamically adjusts redundancy based on channel conditions, ensuring reliable communication even under high attenuation. (iii) Secure key recycling. The method of increasing channel capacity using masking involves encrypting ciphertext with locally generated random numbers, thereby reducing key consumption and enhancing security. Untriggered photons retain encrypted keys, which can be recycled through an optimized balancing mechanism of key depletion and replenishment.
The authors demonstrated STIKE over 104.8 km of standard fiber, achieving a real-time secure rate of 2.38 kbps with a quantum bit error rate (QBER) of 3.6%, thus setting a record for both QSDC distance and rate. For shorter distances (50.3 km), rates up to 34.08 kbps were achieved, which highlighting the scalability of the protocol. The protocol’s stability was further validated through week-long tests, demonstrating resilience against environmental fluctuations. Notably, at 80 km, STIKE information transmission rate surpasses traditional two-way QSDC by three orders of magnitude, underscoring its efficiency.
The one-way architecture of STIKE eliminates the need for two-way transmission in QSDC, simplifying its hardware implementation. Additionally, its compatibility with free-space channels expands its potential applications to satellite-based or mobile quantum networks.
The STIKE protocol bridges the gap between theoretical QSDC and its practical implementation. By enabling the simultaneous transmission of information and key exchange with unprecedented distance and stability, it accelerates the transition toward secure quantum communication infrastructures. Future advancements in device performance and protocol optimization will further unlock its potential, paving the way for a quantum-secured global network [48, 49].

References

[1]
D. Pan, Y. C. Liu, P. Niu, H. Zhang, F. Zhang, M. Wang, X. T. Song, X. Chen, C. Zheng, and G. L. Long, Simultaneous transmission of information and key exchange using the same photonic quantum states, Sci. Adv. 11(8), eadt4627 (2025)
CrossRef ADS Google scholar
[2]
G. L. Long and X. S. Liu, Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
CrossRef ADS Google scholar
[3]
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
CrossRef ADS Google scholar
[4]
F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A 69(5), 052319 (2004)
CrossRef ADS Google scholar
[5]
C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct communication with high-dimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)
CrossRef ADS Google scholar
[6]
D. Pan, G. L. Long, L. Yin, Y. B. Sheng, D. Ruan, S. X. Ng, J. Lu, and L. Hanzo, The evolution of quantum secure direct communication: On the road to the qinternet, IEEE Commun. Surv. Tutor. 26(3), 1898 (2024)
CrossRef ADS arXiv Google scholar
[7]
X. You, C. X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang, C. Zhang, Y. Jiang, J. Wang, M. Zhu, B. Sheng, D. Wang, Z. Pan, P. Zhu, Y. Yang, Z. Liu, P. Zhang, X. Tao, S. Li, Z. Chen, X. Ma, C. L. i, S. Han, K. Li, C. Pan, Z. Zheng, L. Hanzo, X. S. Shen, Y. J. Guo, Z. Ding, H. Haas, W. Tong, P. Zhu, G. Yang, J. Wang, E. G. Larsson, H. Q. Ngo, W. Hong, H. Wang, D. Hou, J. Chen, Z. Chen, Z. Hao, G. Y. Li, R. Tafazolli, Y. Gao, H. V. Poor, G. P. Fettweis, and Y. C. Liang, Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts, Sci. China Inf. Sci. 64(1), 110301 (2021)
CrossRef ADS Google scholar
[8]
G. L. Long, F. G. Deng, C. Wang, K. Wen, W. Y. Wang, and X. H. Li, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China 2(3), 251 (2007)
CrossRef ADS Google scholar
[9]
Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, and L. Hanzo, Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)
CrossRef ADS Google scholar
[10]
J. Liu, X. Zou, X. Wang, Y. Chen, Z. Rong, Z. Huang, S. Zheng, X. Liang, and J. Wu, Applying a class of general maximally entangled states in measurement-device-independent quantum secure direct communication, Phys. Rev. Appl. 21(4), 044010 (2024)
CrossRef ADS Google scholar
[11]
Z. Z. Sun, Y. B. Cheng, D. Ruan, and D. Pan, Single-photon measurement-device-independent quantum secure direct communication, Opt. Commun. 569, 130745 (2024)
CrossRef ADS Google scholar
[12]
C. Liu, C. Zhang, S. P. Gu, X. F. Wang, L. Zhou, and Y. B. Sheng, Receiver-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 68(5), 250311 (2025)
CrossRef ADS Google scholar
[13]
J. W. Ying, P. Zhao, W. Zhong, M. M. Du, X. Y. Li, S. T. Shen, A. L. Zhang, L. Zhou, and Y. B. Sheng, Passive decoy-state quantum secure direct communication with heralded single-photon source, Phys. Rev. Appl. 22(2), 024040 (2024)
CrossRef ADS Google scholar
[14]
J. W. Ying, J. Y. Wang, Y. X. Xiao, S. P. Gu, X. F. Wang, W. Zhong, M. M. Du, X. Y. Li, S. T. Shen, A. L. Zhang, L. Zhou, and Y. B. Sheng, Passive-state preparation for quantum secure direct communication, Sci. China Phys. Mech. Astron. 68(4), 240312 (2025)
CrossRef ADS Google scholar
[15]
J. W. Ying,Q. Zhang,S. P. Gu,X. F. Wang,L. Zhou, Y. B. Sheng, Fully passive quantum secure direct communication, arXiv: 2502.12652 (2025)
[16]
L. Zhou, Y. B. Sheng, and G. L. Long, Device-independent quantum secure direct communication against collective attacks, Sci. Bull. (Beijing) 65(1), 12 (2020)
CrossRef ADS Google scholar
[17]
L. Zhou and Y. B. Sheng, One-step device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 65(5), 250311 (2022)
CrossRef ADS Google scholar
[18]
L. Zhou, B. W. Xu, W. Zhong, and Y. B. Sheng, Device-independent quantum secure direct communication with single-photon, Phys. Rev. Appl. 19(1), 014036 (2023)
CrossRef ADS arXiv Google scholar
[19]
H. Zeng, M. M. Du, W. Zhong, L. Zhou, and Y. B. Sheng, High-capacity device-independent quantum secure direct communication based on hyper-encoding, Fundamental Research 4(4), 851 (2024)
CrossRef ADS Google scholar
[20]
C. W. Ding, W. Y. Wang, W. D. Zhang, L. Zhou, and Y. B. Sheng, Quantum secure direct communication based on quantum error correction code, Appl. Phys. Lett. 126(2), 024002 (2025)
CrossRef ADS Google scholar
[21]
J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, Quantum low probability of intercept, J. Opt. Soc. Am. B 36(3), B41 (2019)
CrossRef ADS Google scholar
[22]
T. Li and G. L. Long, Quantum secure direct communication based on single-photon Bell-state measurement, New J. Phys 063017(22), (2021)
[23]
D. Chandra, A. S. Cacciapuoti, M. Caleffi, and L. Hanzo, Direct quantum communications in the presence of realistic noisy entanglement, IEEE Trans. Commun. 70(1), 469484 (2021)
[24]
X. Liu, Z. J. Li, D. Luo, C. F. Huang, D. Ma, M. M. Geng, J. W. Wang, Z. R. Zhang, and K. J. Wei, Practical decoy-state quantum secure direct communication, Sci. China Phys. Mech. Astron. 64(12), 120311 (2021)
CrossRef ADS Google scholar
[25]
K. X. Liang, Z. W. Cao, X. L. Chen, L. Wang, G. Chai, and J. Y. Peng, A quantum secure direct communication scheme based on intermediate-basis, Front. Phys. (Beijing) 18(5), 51301 (2023)
CrossRef ADS Google scholar
[26]
P. Zhao, W. Zhong, M. M. Du, X. Y. Li, L. Zhou, and Y. B. Sheng, Quantum secure direct communication with hybrid entanglement, Front. Phys. (Beijing) 19(5), 51201 (2024)
CrossRef ADS Google scholar
[27]
I. Paparelle,F. Mousavi,F. Scazza,A. Bassi,M. Paris,A. Zavatta, Practical quantum secure direct communication with squeezed states, arXiv: 2306.14322 (2023)
[28]
J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)
CrossRef ADS Google scholar
[29]
W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)
CrossRef ADS arXiv Google scholar
[30]
R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. L. Long, Implementation and security analysis of practical quantum secure direct communication, Light Sci. Appl. 8(1), 22 (2019)
CrossRef ADS Google scholar
[31]
F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Experimental long-distance quantum secure direct communication, Sci. Bull. (Beijing) 62(22), 1519 (2017)
CrossRef ADS Google scholar
[32]
Z. W. Cao, L. Wang, K. Liang, G. Chai, and J. Peng, Continuous-variable quantum secure direct communication based on Gaussian mapping, Phys. Rev. Appl. 16(2), 024012 (2021)
CrossRef ADS Google scholar
[33]
H. Zhang, Z. Sun, R. Qi, L. Yin, G. L. Long, and J. Lu, Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states, Light Sci. Appl. 11(1), 83 (2022)
CrossRef ADS Google scholar
[34]
X. Liu, D. Luo, G. Lin, Z. Chen, C. Huang, S. Li, C. Zhang, Z. Zhang, and K. Wei, Fiber-based quantum secure direct communication without active polarization compensation, Sci. China Phys. Mech. Astron. 65(12), 120311 (2022)
CrossRef ADS Google scholar
[35]
Z. Cao, Y. Lu, G. Chai, H. Yu, K. Liang, and L. Wang, Realization of quantum secure direct communication with continuous variable, Research 6, 0193 (2023)
CrossRef ADS Google scholar
[36]
D. Pan, Z. Lin, J. Wu, H. Zhang, Z. Sun, D. Ruan, L. Yin, and G. L. Long, Experimental free-space quantum secure direct communication and its security analysis, Photon. Res. 8(9), 1522 (2020)
CrossRef ADS arXiv Google scholar
[37]
Z. Qi,Y. Li,Y. Huang,J. Feng,Y. Zheng, X. Chen, A 15-user quantum secure direct communication network, Light Sci. Appl. 10(1), 183 (2021)
[38]
G. L. Long, D. Pan, Y. B. Sheng, Q. Xue, J. Lu, and L. Hanzo, An evolutionary pathway for the quantum internet relying on secure classical repeaters, IEEE Netw. 36(3), 82 (2022)
CrossRef ADS arXiv Google scholar
[39]
Y. L. Yang,Y. H. Li,H. Li,C. N. Wu,Y. L. Zheng, X. F. Chen, A 300-km fully-connected quantum secure direct communication network, Sci. Bull., doi: 10.1016/j.scib.2025.02.038 (2025)
[40]
Z. Sun, L. Song, Q. Huang, L. Yin, G. Long, J. Lu, and L. Hanzo, Toward practical quantum secure direct communication: A quantum-memory-free protocol and code design, IEEE Trans. Commun. 68(9), 5778 (2020)
CrossRef ADS Google scholar
[41]
Y. C. Liu, Y. B. Cheng, X. B. Pan, Z. Z. Sun, D. Pan, and G. L. Long, Quantum integrated sensing and communication via entanglement, Phys. Rev. Appl. 22(3), 034051 (2024)
CrossRef ADS arXiv Google scholar
[42]
D. Pan, X. T. Song, and G. L. Long, Free-space quantum secure direct communication: Basics, progress, and outlook, Adv. Devices Instrum. 4, 0004 (2023)
CrossRef ADS Google scholar
[43]
K. Wen,F. G. Deng,G. L. Long, Reusable Vernam Cipher with quantum media, arXiv: 0711.1632 (2007)
[44]
F. G. Deng,G. L. Long, Repeatable classical one-time-pad crypto-system with quantum mechanics, arXiv: 1902.04218 (2019)
[45]
C. H. Bennett, G. Brassard, and S. Breidbart, Quantum cryptography II: How to re-use a one-time pad safely even if P = NP, Nat. Comput. 13(4), 453 (2014)
CrossRef ADS arXiv Google scholar
[46]
D. Leermakers and B. Skorić, Quantum Alice and silent Bob: Qubit-based quantum key recycling with almost no classical communication, Quantum Inf. Comput. 21(1−2), 1 (2021)
CrossRef ADS Google scholar
[47]
Y. B. Sheng, L. Zhou, and G. L. Long, One-step quantum secure direct communication, Sci. Bull. (Beijing) 67(4), 367 (2022)
CrossRef ADS Google scholar
[48]
Z. Z. Sun, Y. B. Cheng, D. Ruan, D. Pan, F. H. Zhang, and G. L. Long, Quantum communication network routing with circuit and packet switching strategies, IEEE J. Sel. Areas Comm. (2025)
CrossRef ADS Google scholar
[49]
L. Hanzo,Z. Babar,Z. Cai,D. Chandra,I. B. Djordjevic,B. Koczor,S. X. Ng,M. Razavi,O. Simeone, Quantum information processing, sensing, and communications: Their myths, realities, and futures, in: Proceedings of the IEEE (2025)

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(813 KB)

43

Accesses

0

Citations

Detail

Sections
Recommended

/