Emulating Thouless pumping in the interacting Rice−Mele model using superconducting qutrits

Ziyu Tao, Wenhui Huang, Jingjing Niu, Libo Zhang, Yongguan Ke, Xiu Gu, Ling Lin, Jiawei Qiu, Xuandong Sun, Xiaohan Yang, Jiajian Zhang, Jiawei Zhang, Yuxuan Zhou, Xiaowei Deng, Changkang Hu, Ling Hu, Jian Li, Yang Liu, Dian Tan, Yuan Xu, Tongxing Yan, Yuanzhen Chen, Chaohong Lee, Youpeng Zhong, Song Liu, Dapeng Yu

PDF(4262 KB)
PDF(4262 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 033202. DOI: 10.15302/frontphys.2025.033202
RESEARCH ARTICLE

Emulating Thouless pumping in the interacting Rice−Mele model using superconducting qutrits

Author information +
History +

Abstract

The Rice−Mele model has been a seminal prototypical model for the study of topological phenomena such as Thouless pumping. Here we implement the interacting Rice−Mele model using a superconducting quantum processor comprising a one-dimensional array of 36 qutrits. By adiabatically cycling the qutrit frequencies and hopping strengths in the parametric space, we emulate the Thouless pumping of single and two bounded microwave photons along the qutrit chain. Furthermore, with strong Hubbard interaction inherent in the qutrits we also emulate the intriguing phenomena of resonant tunneling and asymmetric edge-state transport of two interacting photons. Utilizing the interactions and higher energy levels in such fully controlled synthetic quantum simulators, these results demonstrate new opportunities for exploring exotic topological phases and quantum transport phenomena using superconducting quantum circuits.

Graphical abstract

Keywords

quantum simulation / superconducting quantum circuits / superconducting qutrits / Thouless pumping

Cite this article

Download citation ▾
Ziyu Tao, Wenhui Huang, Jingjing Niu, Libo Zhang, Yongguan Ke, Xiu Gu, Ling Lin, Jiawei Qiu, Xuandong Sun, Xiaohan Yang, Jiajian Zhang, Jiawei Zhang, Yuxuan Zhou, Xiaowei Deng, Changkang Hu, Ling Hu, Jian Li, Yang Liu, Dian Tan, Yuan Xu, Tongxing Yan, Yuanzhen Chen, Chaohong Lee, Youpeng Zhong, Song Liu, Dapeng Yu. Emulating Thouless pumping in the interacting Rice−Mele model using superconducting qutrits. Front. Phys., 2025, 20(3): 033202 https://doi.org/10.15302/frontphys.2025.033202

References

[1]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[2]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS arXiv Google scholar
[3]
D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27(10), 6083 (1983)
CrossRef ADS Google scholar
[4]
R. Citro and M. Aidelsburger, Thouless pumping and topology, Nat. Rev. Phys. 5(2), 87 (2023)
CrossRef ADS arXiv Google scholar
[5]
Y. Liu,Y. R. Zhang,Y. H. Shi,T. Liu,C. Lu, ., Disorder-induced topological pumping on a superconducting quantum processor, arXiv: 2401.01530 (2024)
[6]
Q. Niu and D. J. Thouless, Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, J. Phys. Math. Gen. 17(12), 2453 (1984)
CrossRef ADS Google scholar
[7]
Q. Niu, Towards a quantum pump of electric charges, Phys. Rev. Lett. 64(15), 1812 (1990)
CrossRef ADS Google scholar
[8]
J. P. Pekola, O. P. Saira, V. F. Maisi, A. Kemppinen, M. Möttönen, Y. A. Pashkin, and D. V. Averin, Single-electron current sources: Toward a refined definition of the ampere, Rev. Mod. Phys. 85(4), 1421 (2013)
CrossRef ADS arXiv Google scholar
[9]
S. Hu, Y. Ke, and C. Lee, Topological quantum transport and spatial entanglement distribution via a disordered bulk channel, Phys. Rev. A 101(5), 052323 (2020)
CrossRef ADS arXiv Google scholar
[10]
L. Wang, M. Troyer, and X. Dai, Topological charge pumping in a one-dimensional optical lattice, Phys. Rev. Lett. 111(2), 026802 (2013)
CrossRef ADS arXiv Google scholar
[11]
S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Topological Thouless pumping of ultracold fermions, Nat. Phys. 12(4), 296 (2016)
CrossRef ADS arXiv Google scholar
[12]
M. Lohse,C. Schweizer,O. Zilberberg,M. Aidelsburger,I. Bloch, A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice, Nat. Phys. 12(4), 350 (2016)
[13]
S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra, and Y. Takahashi, Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms, Nat. Phys. 17(7), 844 (2021)
CrossRef ADS arXiv Google scholar
[14]
W. Kao, K. Y. Li, K. Y. Lin, S. Gopalakrishnan, and B. L. Lev, Topological pumping of a 1D dipolar gas into strongly correlated prethermal states, Science 371(6526), 296 (2021)
CrossRef ADS arXiv Google scholar
[15]
D. Dreon, A. Baumgärtner, X. Li, S. Hertlein, T. Esslinger, and T. Donner, Self-oscillating pump in a topological dissipative atom-cavity system, Nature 608, 494 (2022)
CrossRef ADS arXiv Google scholar
[16]
M. Jürgensen, S. Mukherjee, and M. C. Rechtsman, Quantized nonlinear Thouless pumping, Nature 596(7870), 63 (2021)
CrossRef ADS arXiv Google scholar
[17]
Y. K. Sun, X. L. Zhang, F. Yu, Z. N. Tian, Q. D. Chen, and H. B. Sun, Non-Abelian Thouless pumping in photonic waveguides, Nat. Phys. 18(9), 1080 (2022)
CrossRef ADS Google scholar
[18]
Q. Cheng, H. Wang, Y. Ke, T. Chen, Y. Yu, Y. S. Kivshar, C. Lee, and Y. Pan, Asymmetric topological pumping in nonparaxial photonics, Nat. Commun. 13(1), 249 (2022)
CrossRef ADS arXiv Google scholar
[19]
M. Jürgensen, S. Mukherjee, C. Jörg, and M. C. Rechtsman, Quantized fractional Thouless pumping of solitons, Nat. Phys. 19(3), 420 (2023)
CrossRef ADS arXiv Google scholar
[20]
Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Topological acoustics, Phys. Rev. Lett. 114(11), 114301 (2015)
CrossRef ADS arXiv Google scholar
[21]
O. You, S. Liang, B. Xie, W. Gao, W. Ye, J. Zhu, and S. Zhang, Observation of non-Abelian Thouless pump, Phys. Rev. Lett. 128(24), 244302 (2022)
CrossRef ADS arXiv Google scholar
[22]
M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and I. Bloch, Exploring 4D quantum Hall physics with a 2D topological charge pump, Nature 553(7686), 55 (2018)
CrossRef ADS arXiv Google scholar
[23]
O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K. P. Chen, Y. E. Kraus, and M. C. Rechtsman, Photonic topological boundary pumping as a probe of 4D quantum Hall physics, Nature 553(7686), 59 (2018)
CrossRef ADS arXiv Google scholar
[24]
D. Y. H. Ho and J. Gong, Quantized adiabatic transport in momentum space, Phys. Rev. Lett. 109(1), 010601 (2012)
CrossRef ADS arXiv Google scholar
[25]
J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P. Roushan, D. Jaksch, and D. G. Angelakis, Topological pumping of photons in nonlinear resonator arrays, Phys. Rev. Lett. 117(21), 213603 (2016)
CrossRef ADS arXiv Google scholar
[26]
Y. Ke, X. Qin, Y. S. Kivshar, and C. Lee, Multiparticle Wannier states and Thouless pumping of interacting bosons, Phys. Rev. A 95(6), 063630 (2017)
CrossRef ADS arXiv Google scholar
[27]
A. Hayward, C. Schweizer, M. Lohse, M. Aidelsburger, and F. Heidrich-Meisner, Topological charge pumping in the interacting bosonic Rice−Mele model, Phys. Rev. B 98(24), 245148 (2018)
CrossRef ADS arXiv Google scholar
[28]
Y. Kuno and Y. Hatsugai, Interaction-induced topological charge pump, Phys. Rev. Res. 2(4), 042024 (2020)
CrossRef ADS arXiv Google scholar
[29]
L. Lin, Y. Ke, and C. Lee, Interaction-induced topological bound states and Thouless pumping in a one-dimensional optical lattice, Phys. Rev. A 101(2), 023620 (2020)
CrossRef ADS arXiv Google scholar
[30]
Y. L. Chen, G. Q. Zhang, D. W. Zhang, and S. L. Zhu, Simulating bosonic Chern insulators in one-dimensional optical superlattices, Phys. Rev. A 101(1), 013627 (2020)
CrossRef ADS arXiv Google scholar
[31]
E. Bertok, F. Heidrich-Meisner, and A. A. Aligia, Splitting of topological charge pumping in an interacting two-component fermionic Rice−Mele Hubbard model, Phys. Rev. B 106(4), 045141 (2022)
CrossRef ADS arXiv Google scholar
[32]
N. Mostaan, F. Grusdt, and N. Goldman, Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures, Nat. Commun. 13(1), 5997 (2022)
CrossRef ADS Google scholar
[33]
Q. Fu, P. Wang, Y. V. Kartashov, V. V. Konotop, and F. Ye, Nonlinear Thouless pumping: Solitons and transport breakdown, Phys. Rev. Lett. 128(15), 154101 (2022)
CrossRef ADS arXiv Google scholar
[34]
A. S. Walter, Z. Zhu, M. Gächter, J. Minguzzi, S. Roschinski, K. Sandholzer, K. Viebahn, and T. Esslinger, Quantisation and its breakdown in a Hubbard-Thouless pump, Nat. Phys. 19(10), 1471 (2023)
CrossRef ADS arXiv Google scholar
[35]
K. Viebahn, A. S. Walter, E. Bertok, Z. Zhu, M. Gächter, A. A. Aligia, F. Heidrich-Meisner, and T. Esslinger, Interactions enable Thouless pumping in a nonsliding lattice, Phys. Rev. X 14(2), 021049 (2024)
CrossRef ADS arXiv Google scholar
[36]
K. Zhang, H. Li, P. Zhang, J. Yuan, J. Chen, W. Ren, Z. Wang, C. Song, D. W. Wang, H. Wang, S. Zhu, G. S. Agarwal, and M. O. Scully, Synthesizing five-body interaction in a superconducting quantum circuit, Phys. Rev. Lett. 128(19), 190502 (2022)
CrossRef ADS arXiv Google scholar
[37]
Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
CrossRef ADS Google scholar
[38]
M. Gong, S. Wang, C. Zha, M. C. Chen, H. L. Huang, Y. Wu, Q. Zhu, Y. Zhao, S. Li, S. Guo, H. Qian, Y. Ye, F. Chen, C. Ying, J. Yu, D. Fan, D. Wu, H. Su, H. Deng, H. Rong, K. Zhang, S. Cao, J. Lin, Y. Xu, L. Sun, C. Guo, N. Li, F. Liang, V. M. Bastidas, K. Nemoto, W. J. Munro, Y. H. Huo, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Quantum walks on a programmable two-dimensional 62-qubit superconducting processor, Science 372(6545), 948 (2021)
CrossRef ADS arXiv Google scholar
[39]
P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, P. J. J. O’Malley, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, E. Kapit, H. Neven, and J. Martinis, Chiral ground-state currents of interacting photons in a synthetic magnetic field, Nat. Phys. 13(2), 146 (2017)
CrossRef ADS arXiv Google scholar
[40]
D. W. Wang, C. Song, W. Feng, H. Cai, D. Xu, H. Deng, H. Li, D. Zheng, X. Zhu, H. Wang, S. Y. Zhu, and M. O. Scully, Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits, Nat. Phys. 15(4), 382 (2019)
CrossRef ADS arXiv Google scholar
[41]
A. Morvan, T. I. Andersen, X. Mi, C. Neill, A. Petukhov, . Formation of robust bound states of interacting microwave photons, Nature 612(7939), 240 (2022)
CrossRef ADS arXiv Google scholar
[42]
R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett. 111(8), 080502 (2013)
CrossRef ADS arXiv Google scholar
[43]
Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu, S. Liu, J. Li, F. Yan, and D. Yu, High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits, Phys. Rev. Lett. 125(24), 240503 (2020)
CrossRef ADS arXiv Google scholar
[44]
B. Saxberg, A. Vrajitoarea, G. Roberts, M. G. Panetta, J. Simon, and D. I. Schuster, Disorder-assisted assembly of strongly correlated fluids of light, Nature 612(7940), 435 (2022)
CrossRef ADS arXiv Google scholar
[45]
M. J. Rice and E. J. Mele, Elementary excitations of a linearly conjugated diatomic polymer, Phys. Rev. Lett. 49(19), 1455 (1982)
CrossRef ADS Google scholar
[46]
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)
CrossRef ADS Google scholar
[47]
L. Privitera, A. Russomanno, R. Citro, and G. E. Santoro, Nonadiabatic breaking of topological pumping, Phys. Rev. Lett. 120(10), 106601 (2018)
CrossRef ADS arXiv Google scholar
[48]
A. F. Linskens, I. Holleman, N. Dam, and J. Reuss, Two-photon Rabi oscillations, Phys. Rev. A 54(6), 4854 (1996)
CrossRef ADS Google scholar
[49]
P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, Strongly correlated quantum walks in optical lattices, Science 347(6227), 1229 (2015)
CrossRef ADS arXiv Google scholar
[50]
M. A. Gorlach and A. N. Poddubny, Topological edge states of bound photon pairs, Phys. Rev. A 95(5), 053866 (2017)
CrossRef ADS arXiv Google scholar
[51]
N. A. Olekhno, E. I. Kretov, A. A. Stepanenko, P. A. Ivanova, V. V. Yaroshenko, E. M. Puhtina, D. S. Filonov, B. Cappello, L. Matekovits, and M. A. Gorlach, Topological edge states of interacting photon pairs emulated in a topolectrical circuit, Nat. Commun. 11(1), 1436 (2020)
CrossRef ADS arXiv Google scholar
[52]
L. Qi, N. Han, S. Hu, and A. L. He, Engineering the unidirectional topological excitation transmission and topological diode in the Rice-Mele model, Phys. Rev. A 108(3), 032402 (2023)
CrossRef ADS Google scholar
[53]
S. H. Han, S. G. Jeong, S. W. Kim, T. H. Kim, and S. Cheon, Topological features of ground states and topological solitons in generalized Su−Schrieffer−Heeger models using generalized time-reversal, particle-hole, and chiral symmetries, Phys. Rev. B 102(23), 235411 (2020)
CrossRef ADS arXiv Google scholar
[54]
X. Mi, M. Ippoliti, C. Quintana, A. Greene, Z. Chen, . Time-crystalline eigenstate order on a quantum processor, Nature 601(7894), 531 (2022)
CrossRef ADS arXiv Google scholar
[55]
C. Wang, F. M. Liu, M. C. Chen, H. Chen, X. H. Zhao, C. Ying, Z. X. Shang, J. W. Wang, Y. H. Huo, C. Z. Peng, X. Zhu, C. Y. Lu, and J. W. Pan, Realization of fractional quantum Hall state with interacting photons, Science 384(6695), 579 (2024)
CrossRef ADS arXiv Google scholar
[56]
C. L. Deng, Y. Liu, Y. R. Zhang, X. G. Li, T. Liu, C. T. Chen, T. Liu, C. W. Lu, Y. Y. Wang, T. M. Li, C. P. Fang, S. Y. Zhou, J. C. Song, Y. S. Xu, Y. He, Z. H. Liu, K. X. Huang, Z. C. Xiang, J. C. Wang, D. N. Zheng, G. M. Xue, K. Xu, H. Yu, and H. Fan, High-order topological pumping on a superconducting quantum processor, Phys. Rev. Lett. 133(14), 140402 (2024)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.033202.

Acknowledgements

We thank Xiongjun Liu, Yucheng Wang, Dawei Lu, and Benchuan Lin for helpful discussions. This work was supported by the National Natural Science Foundation of China (Nos. 12174178, 11905098, 12204228, 12374474, 12025509, and 12275365), the Key-Area Research and Development Program of Guangdong Province (No. 2018B030326001), the Guangdong Provincial Key Laboratory (No. 2019B121203002), the Science, Technology and Innovation Commission of Shenzhen Municipality (Nos. KYTDPT20181011104202253, KQTD20210811090049034, and K21547502), the Innovation Program for Quantum Science and Technology (No. 2021ZD0301703), the Shenzhen−Hong Kong Cooperation Zone for Technology and Innovation (No. HZQB-KCZYB-2020050), the NSF of Beijing (No. Z190012), and the National Key Research and Development Program of China (Nos. 2022YFA1404104 and 2024A1515011714).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(4262 KB)

Accesses

Citations

Detail

Sections
Recommended

/