Emulating Thouless pumping in the interacting Rice−Mele model using superconducting qutrits
Ziyu Tao, Wenhui Huang, Jingjing Niu, Libo Zhang, Yongguan Ke, Xiu Gu, Ling Lin, Jiawei Qiu, Xuandong Sun, Xiaohan Yang, Jiajian Zhang, Jiawei Zhang, Yuxuan Zhou, Xiaowei Deng, Changkang Hu, Ling Hu, Jian Li, Yang Liu, Dian Tan, Yuan Xu, Tongxing Yan, Yuanzhen Chen, Chaohong Lee, Youpeng Zhong, Song Liu, Dapeng Yu
Emulating Thouless pumping in the interacting Rice−Mele model using superconducting qutrits
The Rice−Mele model has been a seminal prototypical model for the study of topological phenomena such as Thouless pumping. Here we implement the interacting Rice−Mele model using a superconducting quantum processor comprising a one-dimensional array of 36 qutrits. By adiabatically cycling the qutrit frequencies and hopping strengths in the parametric space, we emulate the Thouless pumping of single and two bounded microwave photons along the qutrit chain. Furthermore, with strong Hubbard interaction inherent in the qutrits we also emulate the intriguing phenomena of resonant tunneling and asymmetric edge-state transport of two interacting photons. Utilizing the interactions and higher energy levels in such fully controlled synthetic quantum simulators, these results demonstrate new opportunities for exploring exotic topological phases and quantum transport phenomena using superconducting quantum circuits.
quantum simulation / superconducting quantum circuits / superconducting qutrits / Thouless pumping
[1] |
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef
ADS
Google scholar
|
[2] |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[3] |
D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27(10), 6083 (1983)
CrossRef
ADS
Google scholar
|
[4] |
R. Citro and M. Aidelsburger, Thouless pumping and topology, Nat. Rev. Phys. 5(2), 87 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
Y. Liu,Y. R. Zhang,Y. H. Shi,T. Liu,C. Lu,
|
[6] |
Q. Niu and D. J. Thouless, Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, J. Phys. Math. Gen. 17(12), 2453 (1984)
CrossRef
ADS
Google scholar
|
[7] |
Q. Niu, Towards a quantum pump of electric charges, Phys. Rev. Lett. 64(15), 1812 (1990)
CrossRef
ADS
Google scholar
|
[8] |
J. P. Pekola, O. P. Saira, V. F. Maisi, A. Kemppinen, M. Möttönen, Y. A. Pashkin, and D. V. Averin, Single-electron current sources: Toward a refined definition of the ampere, Rev. Mod. Phys. 85(4), 1421 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
S. Hu, Y. Ke, and C. Lee, Topological quantum transport and spatial entanglement distribution via a disordered bulk channel, Phys. Rev. A 101(5), 052323 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
L. Wang, M. Troyer, and X. Dai, Topological charge pumping in a one-dimensional optical lattice, Phys. Rev. Lett. 111(2), 026802 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Topological Thouless pumping of ultracold fermions, Nat. Phys. 12(4), 296 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[12] |
M. Lohse,C. Schweizer,O. Zilberberg,M. Aidelsburger,I. Bloch, A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice, Nat. Phys. 12(4), 350 (2016)
|
[13] |
S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra, and Y. Takahashi, Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms, Nat. Phys. 17(7), 844 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
W. Kao, K. Y. Li, K. Y. Lin, S. Gopalakrishnan, and B. L. Lev, Topological pumping of a 1D dipolar gas into strongly correlated prethermal states, Science 371(6526), 296 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
D. Dreon, A. Baumgärtner, X. Li, S. Hertlein, T. Esslinger, and T. Donner, Self-oscillating pump in a topological dissipative atom-cavity system, Nature 608, 494 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[16] |
M. Jürgensen, S. Mukherjee, and M. C. Rechtsman, Quantized nonlinear Thouless pumping, Nature 596(7870), 63 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
Y. K. Sun, X. L. Zhang, F. Yu, Z. N. Tian, Q. D. Chen, and H. B. Sun, Non-Abelian Thouless pumping in photonic waveguides, Nat. Phys. 18(9), 1080 (2022)
CrossRef
ADS
Google scholar
|
[18] |
Q. Cheng, H. Wang, Y. Ke, T. Chen, Y. Yu, Y. S. Kivshar, C. Lee, and Y. Pan, Asymmetric topological pumping in nonparaxial photonics, Nat. Commun. 13(1), 249 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
M. Jürgensen, S. Mukherjee, C. Jörg, and M. C. Rechtsman, Quantized fractional Thouless pumping of solitons, Nat. Phys. 19(3), 420 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Topological acoustics, Phys. Rev. Lett. 114(11), 114301 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
O. You, S. Liang, B. Xie, W. Gao, W. Ye, J. Zhu, and S. Zhang, Observation of non-Abelian Thouless pump, Phys. Rev. Lett. 128(24), 244302 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and I. Bloch, Exploring 4D quantum Hall physics with a 2D topological charge pump, Nature 553(7686), 55 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K. P. Chen, Y. E. Kraus, and M. C. Rechtsman, Photonic topological boundary pumping as a probe of 4D quantum Hall physics, Nature 553(7686), 59 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
D. Y. H. Ho and J. Gong, Quantized adiabatic transport in momentum space, Phys. Rev. Lett. 109(1), 010601 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[25] |
J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P. Roushan, D. Jaksch, and D. G. Angelakis, Topological pumping of photons in nonlinear resonator arrays, Phys. Rev. Lett. 117(21), 213603 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
Y. Ke, X. Qin, Y. S. Kivshar, and C. Lee, Multiparticle Wannier states and Thouless pumping of interacting bosons, Phys. Rev. A 95(6), 063630 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
A. Hayward, C. Schweizer, M. Lohse, M. Aidelsburger, and F. Heidrich-Meisner, Topological charge pumping in the interacting bosonic Rice−Mele model, Phys. Rev. B 98(24), 245148 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[28] |
Y. Kuno and Y. Hatsugai, Interaction-induced topological charge pump, Phys. Rev. Res. 2(4), 042024 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
L. Lin, Y. Ke, and C. Lee, Interaction-induced topological bound states and Thouless pumping in a one-dimensional optical lattice, Phys. Rev. A 101(2), 023620 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
Y. L. Chen, G. Q. Zhang, D. W. Zhang, and S. L. Zhu, Simulating bosonic Chern insulators in one-dimensional optical superlattices, Phys. Rev. A 101(1), 013627 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
E. Bertok, F. Heidrich-Meisner, and A. A. Aligia, Splitting of topological charge pumping in an interacting two-component fermionic Rice−Mele Hubbard model, Phys. Rev. B 106(4), 045141 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
N. Mostaan, F. Grusdt, and N. Goldman, Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures, Nat. Commun. 13(1), 5997 (2022)
CrossRef
ADS
Google scholar
|
[33] |
Q. Fu, P. Wang, Y. V. Kartashov, V. V. Konotop, and F. Ye, Nonlinear Thouless pumping: Solitons and transport breakdown, Phys. Rev. Lett. 128(15), 154101 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
A. S. Walter, Z. Zhu, M. Gächter, J. Minguzzi, S. Roschinski, K. Sandholzer, K. Viebahn, and T. Esslinger, Quantisation and its breakdown in a Hubbard-Thouless pump, Nat. Phys. 19(10), 1471 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[35] |
K. Viebahn, A. S. Walter, E. Bertok, Z. Zhu, M. Gächter, A. A. Aligia, F. Heidrich-Meisner, and T. Esslinger, Interactions enable Thouless pumping in a nonsliding lattice, Phys. Rev. X 14(2), 021049 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[36] |
K. Zhang, H. Li, P. Zhang, J. Yuan, J. Chen, W. Ren, Z. Wang, C. Song, D. W. Wang, H. Wang, S. Zhu, G. S. Agarwal, and M. O. Scully, Synthesizing five-body interaction in a superconducting quantum circuit, Phys. Rev. Lett. 128(19), 190502 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[37] |
Z. Yan, Y. R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C. Z. Peng, K. Xia, H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and J. W. Pan, Strongly correlated quantum walks with a 12-qubit superconducting processor, Science 364(6442), 753 (2019)
CrossRef
ADS
Google scholar
|
[38] |
M. Gong, S. Wang, C. Zha, M. C. Chen, H. L. Huang, Y. Wu, Q. Zhu, Y. Zhao, S. Li, S. Guo, H. Qian, Y. Ye, F. Chen, C. Ying, J. Yu, D. Fan, D. Wu, H. Su, H. Deng, H. Rong, K. Zhang, S. Cao, J. Lin, Y. Xu, L. Sun, C. Guo, N. Li, F. Liang, V. M. Bastidas, K. Nemoto, W. J. Munro, Y. H. Huo, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Quantum walks on a programmable two-dimensional 62-qubit superconducting processor, Science 372(6545), 948 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[39] |
P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, P. J. J. O’Malley, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, E. Kapit, H. Neven, and J. Martinis, Chiral ground-state currents of interacting photons in a synthetic magnetic field, Nat. Phys. 13(2), 146 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[40] |
D. W. Wang, C. Song, W. Feng, H. Cai, D. Xu, H. Deng, H. Li, D. Zheng, X. Zhu, H. Wang, S. Y. Zhu, and M. O. Scully, Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits, Nat. Phys. 15(4), 382 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[41] |
A. Morvan, T. I. Andersen, X. Mi, C. Neill, A. Petukhov,
CrossRef
ADS
arXiv
Google scholar
|
[42] |
R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett. 111(8), 080502 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu, S. Liu, J. Li, F. Yan, and D. Yu, High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits, Phys. Rev. Lett. 125(24), 240503 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[44] |
B. Saxberg, A. Vrajitoarea, G. Roberts, M. G. Panetta, J. Simon, and D. I. Schuster, Disorder-assisted assembly of strongly correlated fluids of light, Nature 612(7940), 435 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[45] |
M. J. Rice and E. J. Mele, Elementary excitations of a linearly conjugated diatomic polymer, Phys. Rev. Lett. 49(19), 1455 (1982)
CrossRef
ADS
Google scholar
|
[46] |
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)
CrossRef
ADS
Google scholar
|
[47] |
L. Privitera, A. Russomanno, R. Citro, and G. E. Santoro, Nonadiabatic breaking of topological pumping, Phys. Rev. Lett. 120(10), 106601 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[48] |
A. F. Linskens, I. Holleman, N. Dam, and J. Reuss, Two-photon Rabi oscillations, Phys. Rev. A 54(6), 4854 (1996)
CrossRef
ADS
Google scholar
|
[49] |
P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, Strongly correlated quantum walks in optical lattices, Science 347(6227), 1229 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[50] |
M. A. Gorlach and A. N. Poddubny, Topological edge states of bound photon pairs, Phys. Rev. A 95(5), 053866 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[51] |
N. A. Olekhno, E. I. Kretov, A. A. Stepanenko, P. A. Ivanova, V. V. Yaroshenko, E. M. Puhtina, D. S. Filonov, B. Cappello, L. Matekovits, and M. A. Gorlach, Topological edge states of interacting photon pairs emulated in a topolectrical circuit, Nat. Commun. 11(1), 1436 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[52] |
L. Qi, N. Han, S. Hu, and A. L. He, Engineering the unidirectional topological excitation transmission and topological diode in the Rice-Mele model, Phys. Rev. A 108(3), 032402 (2023)
CrossRef
ADS
Google scholar
|
[53] |
S. H. Han, S. G. Jeong, S. W. Kim, T. H. Kim, and S. Cheon, Topological features of ground states and topological solitons in generalized Su−Schrieffer−Heeger models using generalized time-reversal, particle-hole, and chiral symmetries, Phys. Rev. B 102(23), 235411 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[54] |
X. Mi, M. Ippoliti, C. Quintana, A. Greene, Z. Chen,
CrossRef
ADS
arXiv
Google scholar
|
[55] |
C. Wang, F. M. Liu, M. C. Chen, H. Chen, X. H. Zhao, C. Ying, Z. X. Shang, J. W. Wang, Y. H. Huo, C. Z. Peng, X. Zhu, C. Y. Lu, and J. W. Pan, Realization of fractional quantum Hall state with interacting photons, Science 384(6695), 579 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[56] |
C. L. Deng, Y. Liu, Y. R. Zhang, X. G. Li, T. Liu, C. T. Chen, T. Liu, C. W. Lu, Y. Y. Wang, T. M. Li, C. P. Fang, S. Y. Zhou, J. C. Song, Y. S. Xu, Y. He, Z. H. Liu, K. X. Huang, Z. C. Xiang, J. C. Wang, D. N. Zheng, G. M. Xue, K. Xu, H. Yu, and H. Fan, High-order topological pumping on a superconducting quantum processor, Phys. Rev. Lett. 133(14), 140402 (2024)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |