Multiple spin couplings and layer−valley interactions in room-temperature ferromagnetic Fe3GaTe2
Azizur Rahman, Majeed Ur Rehman, Zheng Chen, Waqas Ahmad, Zia Ur Rahman, Yang Yang, Min Ge, Lei Zhang
Multiple spin couplings and layer−valley interactions in room-temperature ferromagnetic Fe3GaTe2
Fe3GaTe2 has attracted significant interest due to its intrinsic room-temperature ferromagnetism, yet its magnetic interactions remain debated. We thoroughly investigate the magnetism of Fe3GaTe2 using critical analysis, nitrogen−vacancy (NV) center magnetometry, and Density Function Theory (DFT). Our critical phenomenon analysis with exponents [ = 0.3706(9), = 1.32(6), = 4.7(2)] and DFT calculations reveal competition between itinerant and localized spins driven by anisotropic coupling, which can be attributed to a net charge transfer of approximately 0.22 electrons from Fe3+ to surrounding Ge/Te atoms. As confirmed by NV center magnetometry, the ferromagnetism in Fe3GaTe2 remains robust even in thin-layered sheet of 16 nm (corresponding to approximately 20 layers). The out-of-plane ferromagnetism in thin Fe3GaTe2 sheets is stabilized due to the distinct spin interaction energies between intralayers ( ~ 66.74 meV and ~ 17.33 meV) and interlayers ( ~ 3.78 meV). In addition, the constant energy contour profiles near the Fermi surface of Fe3GaTe2 suggest the presence of both hole and electron pockets with a distorted contour around the point, indicating hexagonal trigonal warping effects. Furthermore, the layer-resolved electronic band structure uncovers a layer−valley coupling near the Fermi surface, with bands at valleys and associated with different layers. These findings pave way for advanced electronic applications operating above-room-temperature.
couplings / layer / interactions / above-room-temperature intrinsic ferromagnetism / strong magnetic anisotropy / critical phenomenon analysis / nitrogen−vacancy (NV) center magnetometry / Density Function Theory (DFT)
[1] |
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[2] |
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[3] |
T. J. Williams, A. A. Aczel, M. D. Lumsden, S. E. Nagler, M. B. Stone, J. Q. Yan, and D. Mandrus, Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3, Phys. Rev. B 92(14), 144404 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[4] |
S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Controlling magnetism in 2D CrI3 by electrostatic doping, Nat. Nanotechnol. 13(7), 549 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
S. Jiang, J. Shan, and K. F. Mak, Electric-field switching of two-dimensional van der Waals magnets, Nat. Mater. 17(5), 406 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[7] |
J. L. Lado and J. Fernandez-Rossier, On the origin of magnetic anisotropy in two dimensional CrI3, 2D Mater. 4, 035002 (2017)
CrossRef
ADS
Google scholar
|
[8] |
N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17(22), 1133 (1966)
CrossRef
ADS
Google scholar
|
[9] |
G. Zhang, F. Guo, H. Wu, X. Wen, L. Yang, W. Jin, W. Zhang, and H. Chang, Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy, Nat. Commun. 13(1), 5067 (2022)
CrossRef
ADS
Google scholar
|
[10] |
C. Yun, H. Guo, Z. Lin, L. Peng, Z. Liang, M. Meng, B. Zhang, Z. Zhao, L. Wang, Y. Ma, Y. Liu, W. Li, S. Ning, Y. Hou, J. Yang, and Z. Luo, Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet, Sci. Adv. 9(49), eadj3955 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
Y. Deng, M. Wang, Z. Xiang, K. Zhu, T. Hu, L. Lu, Y. Wang, Y. Ma, B. Lei, and X. Chen, Room-temperature highly efficient nonvolatile magnetization switching by current in van der Waals Fe3GaTe2 devices, Nano Lett. 24(30), 9302 (2024)
CrossRef
ADS
Google scholar
|
[12] |
A. M. Ruiz, D. L. Esteras, D. Lopez-Alcala, and J. J. Baldovi, On the origin of the above-room-temperature magnetism in the 2D van der Waals ferromagnet Fe3GaTe2, Nano Lett. 24(26), 7886 (2024)
CrossRef
ADS
Google scholar
|
[13] |
I. Khan and J. Hong, Giant anomalous transverse trans-port properties of Co-doped two-dimensional Fe3GaTe2, Front. Phys. 19(6), 63206 (2024)
CrossRef
ADS
Google scholar
|
[14] |
G. Hu, H. Guo, S. Lv, L. Li, Y. Wang, Y. Han, L. Pan, Y. Xie, W. Yu, K. Zhu, Q. Qi, G. Xian, S. Zhu, J. Shi, L. Bao, X. Lin, W. Zhou, H. Yang, and H. Gao, Room-temperature antisymmetric magnetoresistance in van der Waals ferromagnet Fe3GaTe2 nanosheets, Adv. Mater. 36(27), 2403154 (2024)
CrossRef
ADS
Google scholar
|
[15] |
W. Li, W. Zhu, G. Zhang, H. Wu, S. Zhu, R. Li, E. Zhang, X. Zhang, Y. Deng, J. Zhang, L. Zhao, H. Chang, and K. Wang, Room-temperature van der Waals ferromagnet switching by spin−orbit torques, Adv. Mater. 35(51), 2303688 (2023)
CrossRef
ADS
Google scholar
|
[16] |
Z. Chen, Y. Yang, T. Ying, and J. G. Guo, High-TC ferromagnetic semiconductor in thinned 3D Ising ferromagnetic metal Fe3GaTe2, Nano Lett. 24(3), 993 (2024)
CrossRef
ADS
Google scholar
|
[17] |
H. Algaidi, C. Zhang, Y. Ma, C. Liu, A. Chen, D. Zheng, and X. Zhang, Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism, APL Mater. 12(1), 011124 (2024)
CrossRef
ADS
Google scholar
|
[18] |
J. E. Lee, S. Yan, S. Oh, J. Hwang, J. D. Denlinger, C. Hwang, H. Lei, S. K. Mo, S. Y. Park, and H. Ryu, Electronic structure of above-room-temperature van der Waals ferromagnet Fe3GaTe2, Nano Lett. 23(24), 11526 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
X. Li, M. Zhu, Y. Wang, F. Zheng, J. Dong, Y. Zhou, L. You, and J. Zhang, Tremendous tunneling magnetoresistance effects based on van der Waals room-temperature ferromagnet Fe3GaTe2 with highly spin-polarized Fermi surfaces, Appl. Phys. Lett. 122(8), 082404 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
J. E. Lee, S. Yan, S. Oh, J. Hwang, J. D. Denlinger, C. Hwang, H. Lei, S. K. Mo, S. Y. Park, and H. Ryu, Electronic structure of above-room-temperature van der Waals ferromagnet Fe3GaTe2, Nano Lett. 23(24), 11526 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
Y. Wu, Y. Hu, C. Wang, X. Zhou, X. Hou, W. Xia, Y. Zhang, J. Wang, Y. Ding, J. He, P. Dong, S. Bao, J. Wen, Y. Guo, K. Watanabe, T. Taniguchi, W. Ji, Z. J. Wang, and J. Li, Fe-intercalation dominated ferromagnetism of van der Waals Fe3GeTe2, Adv. Mater. 35(36), 2302568 (2023)
CrossRef
ADS
Google scholar
|
[22] |
B. Marfoua, I. Khan, and J. Hong, Ultra-thin 2D Fe3GaTe2 rare-earth free permanent magnet at finite temperatures, J. Phys. D Appl. Phys. 57(3), 035003 (2024)
CrossRef
ADS
Google scholar
|
[23] |
C. Liu, S. Zhang, H. Hao, H. Algaidi, Y. Ma, and X. X. Zhang, Magnetic skyrmions above room temperature in a van der Waals ferromagnet Fe3GaTe2, Adv. Mater. 36(18), 2311022 (2024)
CrossRef
ADS
Google scholar
|
[24] |
S. Jin, Y. Wang, H. Zheng, S. Dong, K. Han, Z. Wang, G. Wang, X. Jiang, X. Wang, J. Hong, H. Huang, Y. Zhang, T. L. Xia, and X. Wang, Thickness- and field-dependent magnetic domain evolution in van der Waals Fe3GaTe2, Nano Lett. 24(18), 5467 (2024)
CrossRef
ADS
Google scholar
|
[25] |
X. Lv, H. Lv, Y. Huang, R. Zhang, G. Qin, Y. Dong, M. Liu, K. Pei, G. Cao, J. Zhang, Y. Lai, and R. Che, Distinct skyrmion phases at room temperature in two- dimensional ferromagnet Fe3GaTe2, Nat. Commun. 15(1), 3278 (2024)
CrossRef
ADS
Google scholar
|
[26] |
Z. Li, H. Zhang, G. Li, J. Guo, Q. Wang, Y. Deng, Y. Hu, X. Hu, C. Liu, M. Qin, X. Shen, R. Yu, X. Gao, Z. Liao, J. Liu, Z. Hou, Y. Zhu, and X. Fu, Room-temperature sub-100 nm Neel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe3−xGaTe2 with ultrafast laser writability, Nat. Commun. 15(1), 1017 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
S. Bera, S. K. Pradhan, M. S. Khan, R. Pal, B. Pal, S. Kalimuddin, A. Bera, B. Das, A. N. Pal, and M. Mondal, Unravelling the nature of spin reorientation transition in quasi-2D vdW magnetic material, Fe4GeTe2, J. Magn. Magn. Mater. 565, 170257 (2023)
CrossRef
ADS
Google scholar
|
[28] |
S. Mondal, N. Khan, S. M. Mishra, B. Satpati, and P. Mandal, Critical behavior in the van der Waals itinerant ferromagnet Fe4GeTe2, Phys. Rev. B 104(9), 094405 (2021)
CrossRef
ADS
Google scholar
|
[29] |
H. E. Stanley, Phase Transitions and Critical Phenomena, Clarendon Press, Oxford, 1971
|
[30] |
B. Banerjee, On a generalised approach to first and second order magnetic transitions, Phys. Lett. 12(1), 16 (1964)
CrossRef
ADS
Google scholar
|
[31] |
M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Critical exponents and equation of state of the three-dimensional Heisenberg universality class, Phys. Rev. B Condens. Matter 65(14), 144520 (2002)
CrossRef
ADS
Google scholar
|
[32] |
S. J. Poon and J. Durand, Critical phenomena and magnetic properties of an amorphous ferromagnet: Gadolinium-gold, Phys. Rev., B, Solid State 16(1), 316 (1977)
CrossRef
ADS
Google scholar
|
[33] |
A. Rahman, M. Rehman, D. Zhang, M. Zhang, X. Wang, R. Dai, Z. Wang, X. Tao, L. Zhang, and Z. Zhang, Critical behavior in the half-metallic Heusler alloy Co2TiSn, Phys. Rev. B 100(21), 214419 (2019)
CrossRef
ADS
Google scholar
|
[34] |
B. Liu, Y. Zou, S. Zhou, L. Zhang, Z. Wang, H. Li, Z. Qu, and Y. Zhang, Critical behavior of the van der Waals bonded high TC ferromagnet Fe3GeTe2, Sci. Rep. 7(1), 6184 (2017)
CrossRef
ADS
Google scholar
|
[35] |
Z. Li, W. Xia, H. Su, Z. Yu, Y. Fu, L. Chen, X. Wang, N. Yu, Z. Zou, and Y. Guo, Magnetic critical behavior of the van der Waals Fe5GeTe2 crystal with near room temperature ferromagnetism, Sci. Rep. 10(1), 15345 (2020)
CrossRef
ADS
Google scholar
|
[36] |
Y. Liu, V. N. Ivanovski, and C. Petrovic, Critical behavior of the van der Waals bonded ferromagnet Fe3−xGeTe2, Phys. Rev. B 96(14), 144429 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[37] |
A. Rahman, M. Rehman, H. Zhao, W. Liu, J. Wang, Y. Lu, K. Ruan, R. Dai, Z. Wang, X. Tao, L. Zhang, and Z. Zhang, Itinerant magnetism in the half-metallic Heusler compound Co2HfSn: Evidence from critical behavior combined with first-principles calculations, Phys. Rev. B 103(9), 094425 (2021)
CrossRef
ADS
Google scholar
|
[38] |
H. Wu, C. Hu, Y. Xie, B. G. Jang, J. Huang, Y. Guo, S. Wu, C. Hu, Z. Yue, Y. Shi, R. Basak, Z. Ren, T. Yilmaz, E. Vescovo, C. Jozwiak, A. Bostwick, E. Rotenberg, A. Fedorov, J. D. Denlinger, C. Klewe, P. Shafer, D. Lu, M. Hashimoto, J. Kono, A. Frano, R. J. Birgeneau, X. Xu, J. X. Zhu, P. Dai, J. H. Chu, and M. Yi, Spectral evidence for local-moment ferromagnetism in the van der Waals metals Fe3GaTe2 and Fe3GeTe2, Phys. Rev. B 109(10), 104410 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[39] |
M. U. Rehman, Z. Qiao, and J. Wang, Valley-symmetry-broken magnetic topological responses in (Pt/Pd)2HgSe3/CrGeTe3 and Pd2HgSe3/CrI3 through interfacial coupling, Phys. Rev. B 105(16), 165417 (2022)
CrossRef
ADS
Google scholar
|
[40] |
S. Mi, J. Guo, G. Hu, G. Wang, S. Li, Z. Gong, S. Jin, R. Xu, F. Pang, W. Ji, W. Yu, X. Wang, X. Wang, H. Yang, and Z. Cheng, Real-space topology-engineering of skyrmionic spin textures in a van der Waals ferromagnet Fe3GaTe2, Nano Lett. 24, 13094 (2024)
CrossRef
ADS
Google scholar
|
[41] |
H. Wu, J. Guo, S. Zhaxi, H. Xu, S. Mi, L. Wang, S. Chen, R. Xu, W. Ji, F. Pang, and Z. Cheng, Controllable CVD growth of 2D Cr5Te8 nanosheets with thickness-dependent magnetic domains, ACS Appl. Mater. Interfaces 15(21), 26148 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
A. Anirban, Quantum anomalous layer Hall effect, Nat. Rev. Phys. 5(5), 271 (2023)
CrossRef
ADS
Google scholar
|
[43] |
M. U. Rehman, Z. U. Rahman, and M. Kiani, Emerging spintronic and valleytronic phenomena in noncentrosym-metric variants of the Kane−Mele X4Y2Z6 materials family (X = Pt, Pd, Ni; Y= Hg, Zn, Cd; Z = S, Se, Te), Phys. Rev. B 109(16), 165424 (2024)
CrossRef
ADS
Google scholar
|
[44] |
Y. Feng, Y. Dai, B. Huang, L. Kou, and Y. Ma, Layer Hall effect in multiferroic two-dimensional materials, Nano Lett. 23(11), 5367 (2023)
CrossRef
ADS
Google scholar
|
[45] |
M. U. Rehman, M. Kiani, and J. Wang, Jacutingaite family: An efficient platform for coexistence of spin valley Hall effects, valley spin-valve realization, and layer spin crossover, Phys. Rev. B 105(19), 195439 (2022)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |