Multiple spin couplings and layer−valley interactions in room-temperature ferromagnetic Fe3GaTe2

Azizur Rahman, Majeed Ur Rehman, Zheng Chen, Waqas Ahmad, Zia Ur Rahman, Yang Yang, Min Ge, Lei Zhang

PDF(3406 KB)
PDF(3406 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 033201. DOI: 10.15302/frontphys.2025.033201
RESEARCH ARTICLE

Multiple spin couplings and layer−valley interactions in room-temperature ferromagnetic Fe3GaTe2

Author information +
History +

Abstract

Fe3GaTe2 has attracted significant interest due to its intrinsic room-temperature ferromagnetism, yet its magnetic interactions remain debated. We thoroughly investigate the magnetism of Fe3GaTe2 using critical analysis, nitrogen−vacancy (NV) center magnetometry, and Density Function Theory (DFT). Our critical phenomenon analysis with exponents [ β = 0.3706(9), γ = 1.32(6), δ = 4.7(2)] and DFT calculations reveal competition between itinerant and localized spins driven by anisotropic coupling, which can be attributed to a net charge transfer of approximately 0.22 electrons from Fe3+ to surrounding Ge/Te atoms. As confirmed by NV center magnetometry, the ferromagnetism in Fe3GaTe2 remains robust even in thin-layered sheet of 16 nm (corresponding to approximately 20 layers). The out-of-plane ferromagnetism in thin Fe3GaTe2 sheets is stabilized due to the distinct spin interaction energies between intralayers ( J1 ~ 66.74 meV and J2 ~ 17.33 meV) and interlayers ( Jz ~ 3.78 meV). In addition, the constant energy contour profiles near the Fermi surface of Fe3GaTe2 suggest the presence of both hole and electron pockets with a distorted contour around the K/K point, indicating hexagonal trigonal warping effects. Furthermore, the layer-resolved electronic band structure uncovers a layer−valley coupling near the Fermi surface, with bands at valleys K and K associated with different layers. These findings pave way for advanced electronic applications operating above-room-temperature.

Graphical abstract

Keywords

couplings / layer / interactions / above-room-temperature intrinsic ferromagnetism / strong magnetic anisotropy / critical phenomenon analysis / nitrogen−vacancy (NV) center magnetometry / Density Function Theory (DFT)

Cite this article

Download citation ▾
Azizur Rahman, Majeed Ur Rehman, Zheng Chen, Waqas Ahmad, Zia Ur Rahman, Yang Yang, Min Ge, Lei Zhang. Multiple spin couplings and layer−valley interactions in room-temperature ferromagnetic Fe3GaTe2. Front. Phys., 2025, 20(3): 033201 https://doi.org/10.15302/frontphys.2025.033201

References

[1]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef ADS arXiv Google scholar
[2]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef ADS arXiv Google scholar
[3]
T. J. Williams, A. A. Aczel, M. D. Lumsden, S. E. Nagler, M. B. Stone, J. Q. Yan, and D. Mandrus, Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3, Phys. Rev. B 92(14), 144404 (2015)
CrossRef ADS arXiv Google scholar
[4]
S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Controlling magnetism in 2D CrI3 by electrostatic doping, Nat. Nanotechnol. 13(7), 549 (2018)
CrossRef ADS arXiv Google scholar
[5]
S. Jiang, J. Shan, and K. F. Mak, Electric-field switching of two-dimensional van der Waals magnets, Nat. Mater. 17(5), 406 (2018)
CrossRef ADS arXiv Google scholar
[6]
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
CrossRef ADS arXiv Google scholar
[7]
J. L. Lado and J. Fernandez-Rossier, On the origin of magnetic anisotropy in two dimensional CrI3, 2D Mater. 4, 035002 (2017)
CrossRef ADS Google scholar
[8]
N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17(22), 1133 (1966)
CrossRef ADS Google scholar
[9]
G. Zhang, F. Guo, H. Wu, X. Wen, L. Yang, W. Jin, W. Zhang, and H. Chang, Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy, Nat. Commun. 13(1), 5067 (2022)
CrossRef ADS Google scholar
[10]
C. Yun, H. Guo, Z. Lin, L. Peng, Z. Liang, M. Meng, B. Zhang, Z. Zhao, L. Wang, Y. Ma, Y. Liu, W. Li, S. Ning, Y. Hou, J. Yang, and Z. Luo, Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet, Sci. Adv. 9(49), eadj3955 (2023)
CrossRef ADS arXiv Google scholar
[11]
Y. Deng, M. Wang, Z. Xiang, K. Zhu, T. Hu, L. Lu, Y. Wang, Y. Ma, B. Lei, and X. Chen, Room-temperature highly efficient nonvolatile magnetization switching by current in van der Waals Fe3GaTe2 devices, Nano Lett. 24(30), 9302 (2024)
CrossRef ADS Google scholar
[12]
A. M. Ruiz, D. L. Esteras, D. Lopez-Alcala, and J. J. Baldovi, On the origin of the above-room-temperature magnetism in the 2D van der Waals ferromagnet Fe3GaTe2, Nano Lett. 24(26), 7886 (2024)
CrossRef ADS Google scholar
[13]
I. Khan and J. Hong, Giant anomalous transverse trans-port properties of Co-doped two-dimensional Fe3GaTe2, Front. Phys. 19(6), 63206 (2024)
CrossRef ADS Google scholar
[14]
G. Hu, H. Guo, S. Lv, L. Li, Y. Wang, Y. Han, L. Pan, Y. Xie, W. Yu, K. Zhu, Q. Qi, G. Xian, S. Zhu, J. Shi, L. Bao, X. Lin, W. Zhou, H. Yang, and H. Gao, Room-temperature antisymmetric magnetoresistance in van der Waals ferromagnet Fe3GaTe2 nanosheets, Adv. Mater. 36(27), 2403154 (2024)
CrossRef ADS Google scholar
[15]
W. Li, W. Zhu, G. Zhang, H. Wu, S. Zhu, R. Li, E. Zhang, X. Zhang, Y. Deng, J. Zhang, L. Zhao, H. Chang, and K. Wang, Room-temperature van der Waals ferromagnet switching by spin−orbit torques, Adv. Mater. 35(51), 2303688 (2023)
CrossRef ADS Google scholar
[16]
Z. Chen, Y. Yang, T. Ying, and J. G. Guo, High-TC ferromagnetic semiconductor in thinned 3D Ising ferromagnetic metal Fe3GaTe2, Nano Lett. 24(3), 993 (2024)
CrossRef ADS Google scholar
[17]
H. Algaidi, C. Zhang, Y. Ma, C. Liu, A. Chen, D. Zheng, and X. Zhang, Magnetic critical behavior of van der Waals Fe3GaTe2 with above-room-temperature ferromagnetism, APL Mater. 12(1), 011124 (2024)
CrossRef ADS Google scholar
[18]
J. E. Lee, S. Yan, S. Oh, J. Hwang, J. D. Denlinger, C. Hwang, H. Lei, S. K. Mo, S. Y. Park, and H. Ryu, Electronic structure of above-room-temperature van der Waals ferromagnet Fe3GaTe2, Nano Lett. 23(24), 11526 (2023)
CrossRef ADS arXiv Google scholar
[19]
X. Li, M. Zhu, Y. Wang, F. Zheng, J. Dong, Y. Zhou, L. You, and J. Zhang, Tremendous tunneling magnetoresistance effects based on van der Waals room-temperature ferromagnet Fe3GaTe2 with highly spin-polarized Fermi surfaces, Appl. Phys. Lett. 122(8), 082404 (2023)
CrossRef ADS arXiv Google scholar
[20]
J. E. Lee, S. Yan, S. Oh, J. Hwang, J. D. Denlinger, C. Hwang, H. Lei, S. K. Mo, S. Y. Park, and H. Ryu, Electronic structure of above-room-temperature van der Waals ferromagnet Fe3GaTe2, Nano Lett. 23(24), 11526 (2023)
CrossRef ADS arXiv Google scholar
[21]
Y. Wu, Y. Hu, C. Wang, X. Zhou, X. Hou, W. Xia, Y. Zhang, J. Wang, Y. Ding, J. He, P. Dong, S. Bao, J. Wen, Y. Guo, K. Watanabe, T. Taniguchi, W. Ji, Z. J. Wang, and J. Li, Fe-intercalation dominated ferromagnetism of van der Waals Fe3GeTe2, Adv. Mater. 35(36), 2302568 (2023)
CrossRef ADS Google scholar
[22]
B. Marfoua, I. Khan, and J. Hong, Ultra-thin 2D Fe3GaTe2 rare-earth free permanent magnet at finite temperatures, J. Phys. D Appl. Phys. 57(3), 035003 (2024)
CrossRef ADS Google scholar
[23]
C. Liu, S. Zhang, H. Hao, H. Algaidi, Y. Ma, and X. X. Zhang, Magnetic skyrmions above room temperature in a van der Waals ferromagnet Fe3GaTe2, Adv. Mater. 36(18), 2311022 (2024)
CrossRef ADS Google scholar
[24]
S. Jin, Y. Wang, H. Zheng, S. Dong, K. Han, Z. Wang, G. Wang, X. Jiang, X. Wang, J. Hong, H. Huang, Y. Zhang, T. L. Xia, and X. Wang, Thickness- and field-dependent magnetic domain evolution in van der Waals Fe3GaTe2, Nano Lett. 24(18), 5467 (2024)
CrossRef ADS Google scholar
[25]
X. Lv, H. Lv, Y. Huang, R. Zhang, G. Qin, Y. Dong, M. Liu, K. Pei, G. Cao, J. Zhang, Y. Lai, and R. Che, Distinct skyrmion phases at room temperature in two- dimensional ferromagnet Fe3GaTe2, Nat. Commun. 15(1), 3278 (2024)
CrossRef ADS Google scholar
[26]
Z. Li, H. Zhang, G. Li, J. Guo, Q. Wang, Y. Deng, Y. Hu, X. Hu, C. Liu, M. Qin, X. Shen, R. Yu, X. Gao, Z. Liao, J. Liu, Z. Hou, Y. Zhu, and X. Fu, Room-temperature sub-100 nm Neel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe3−xGaTe2 with ultrafast laser writability, Nat. Commun. 15(1), 1017 (2024)
CrossRef ADS arXiv Google scholar
[27]
S. Bera, S. K. Pradhan, M. S. Khan, R. Pal, B. Pal, S. Kalimuddin, A. Bera, B. Das, A. N. Pal, and M. Mondal, Unravelling the nature of spin reorientation transition in quasi-2D vdW magnetic material, Fe4GeTe2, J. Magn. Magn. Mater. 565, 170257 (2023)
CrossRef ADS Google scholar
[28]
S. Mondal, N. Khan, S. M. Mishra, B. Satpati, and P. Mandal, Critical behavior in the van der Waals itinerant ferromagnet Fe4GeTe2, Phys. Rev. B 104(9), 094405 (2021)
CrossRef ADS Google scholar
[29]
H. E. Stanley, Phase Transitions and Critical Phenomena, Clarendon Press, Oxford, 1971
[30]
B. Banerjee, On a generalised approach to first and second order magnetic transitions, Phys. Lett. 12(1), 16 (1964)
CrossRef ADS Google scholar
[31]
M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Critical exponents and equation of state of the three-dimensional Heisenberg universality class, Phys. Rev. B Condens. Matter 65(14), 144520 (2002)
CrossRef ADS Google scholar
[32]
S. J. Poon and J. Durand, Critical phenomena and magnetic properties of an amorphous ferromagnet: Gadolinium-gold, Phys. Rev., B, Solid State 16(1), 316 (1977)
CrossRef ADS Google scholar
[33]
A. Rahman, M. Rehman, D. Zhang, M. Zhang, X. Wang, R. Dai, Z. Wang, X. Tao, L. Zhang, and Z. Zhang, Critical behavior in the half-metallic Heusler alloy Co2TiSn, Phys. Rev. B 100(21), 214419 (2019)
CrossRef ADS Google scholar
[34]
B. Liu, Y. Zou, S. Zhou, L. Zhang, Z. Wang, H. Li, Z. Qu, and Y. Zhang, Critical behavior of the van der Waals bonded high TC ferromagnet Fe3GeTe2, Sci. Rep. 7(1), 6184 (2017)
CrossRef ADS Google scholar
[35]
Z. Li, W. Xia, H. Su, Z. Yu, Y. Fu, L. Chen, X. Wang, N. Yu, Z. Zou, and Y. Guo, Magnetic critical behavior of the van der Waals Fe5GeTe2 crystal with near room temperature ferromagnetism, Sci. Rep. 10(1), 15345 (2020)
CrossRef ADS Google scholar
[36]
Y. Liu, V. N. Ivanovski, and C. Petrovic, Critical behavior of the van der Waals bonded ferromagnet Fe3−xGeTe2, Phys. Rev. B 96(14), 144429 (2017)
CrossRef ADS arXiv Google scholar
[37]
A. Rahman, M. Rehman, H. Zhao, W. Liu, J. Wang, Y. Lu, K. Ruan, R. Dai, Z. Wang, X. Tao, L. Zhang, and Z. Zhang, Itinerant magnetism in the half-metallic Heusler compound Co2HfSn: Evidence from critical behavior combined with first-principles calculations, Phys. Rev. B 103(9), 094425 (2021)
CrossRef ADS Google scholar
[38]
H. Wu, C. Hu, Y. Xie, B. G. Jang, J. Huang, Y. Guo, S. Wu, C. Hu, Z. Yue, Y. Shi, R. Basak, Z. Ren, T. Yilmaz, E. Vescovo, C. Jozwiak, A. Bostwick, E. Rotenberg, A. Fedorov, J. D. Denlinger, C. Klewe, P. Shafer, D. Lu, M. Hashimoto, J. Kono, A. Frano, R. J. Birgeneau, X. Xu, J. X. Zhu, P. Dai, J. H. Chu, and M. Yi, Spectral evidence for local-moment ferromagnetism in the van der Waals metals Fe3GaTe2 and Fe3GeTe2, Phys. Rev. B 109(10), 104410 (2024)
CrossRef ADS arXiv Google scholar
[39]
M. U. Rehman, Z. Qiao, and J. Wang, Valley-symmetry-broken magnetic topological responses in (Pt/Pd)2HgSe3/CrGeTe3 and Pd2HgSe3/CrI3 through interfacial coupling, Phys. Rev. B 105(16), 165417 (2022)
CrossRef ADS Google scholar
[40]
S. Mi, J. Guo, G. Hu, G. Wang, S. Li, Z. Gong, S. Jin, R. Xu, F. Pang, W. Ji, W. Yu, X. Wang, X. Wang, H. Yang, and Z. Cheng, Real-space topology-engineering of skyrmionic spin textures in a van der Waals ferromagnet Fe3GaTe2, Nano Lett. 24, 13094 (2024)
CrossRef ADS Google scholar
[41]
H. Wu, J. Guo, S. Zhaxi, H. Xu, S. Mi, L. Wang, S. Chen, R. Xu, W. Ji, F. Pang, and Z. Cheng, Controllable CVD growth of 2D Cr5Te8 nanosheets with thickness-dependent magnetic domains, ACS Appl. Mater. Interfaces 15(21), 26148 (2023)
CrossRef ADS arXiv Google scholar
[42]
A. Anirban, Quantum anomalous layer Hall effect, Nat. Rev. Phys. 5(5), 271 (2023)
CrossRef ADS Google scholar
[43]
M. U. Rehman, Z. U. Rahman, and M. Kiani, Emerging spintronic and valleytronic phenomena in noncentrosym-metric variants of the Kane−Mele X4Y2Z6 materials family (X = Pt, Pd, Ni; Y= Hg, Zn, Cd; Z = S, Se, Te), Phys. Rev. B 109(16), 165424 (2024)
CrossRef ADS Google scholar
[44]
Y. Feng, Y. Dai, B. Huang, L. Kou, and Y. Ma, Layer Hall effect in multiferroic two-dimensional materials, Nano Lett. 23(11), 5367 (2023)
CrossRef ADS Google scholar
[45]
M. U. Rehman, M. Kiani, and J. Wang, Jacutingaite family: An efficient platform for coexistence of spin valley Hall effects, valley spin-valve realization, and layer spin crossover, Phys. Rev. B 105(19), 195439 (2022)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electranic Supplementary Material

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.033201. Further details, such as experimental methods, fitting progress, theoretical calculations, and calculated exchange coupling strengths in different possible magnetic configurations, can be found in the supplementary material.

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2024YFA1611103), the National Natural Science Foundation of China (Grant Nos. 12350410367, 12074360, 12374128, 12074386, 12250410238, and 62150410438), the Alliance of International Science Organizations (Grant Nos. ANSO-VF-2022-03 and ANSO-VF-2024-03), and Anhui Provincial Major S&T Project (Grant No. s202305a12020005). A portion of this work was supported by the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021-08) and the High Magnetic Field Laboratory of Anhui Province under Contract No. AHHM-FX-2020-02. We thank the Steady High Magnetic Field Facility (https://cstr.cn/31125.02.SHMFF.XRD) of CAS for data collection and analysis.

RIGHTS & PERMISSIONS

2025 Higher Education Press
PDF(3406 KB)

Accesses

Citations

Detail

Sections
Recommended

/