Recent advances in laser diode-pumped InnoSlab amplifiers
Fayyaz Javed, Sizhi Xu, Yubo Gao, Zuoyuan Ou, Junzhan Chen, Xingyu He, Haotian Lu, Chunyu Guo, Qitao Lue, Xing Liu, Shuangchen Ruan
Recent advances in laser diode-pumped InnoSlab amplifiers
Significant progress has been made in high-power ultrafast laser technology since the development of diode-pumped solid-state laser systems. Three main types of diode-pumped laser systems, InnoSlab, fiber, and thin disk lasers, offer highly efficient cooling geometries that are essential for high-power ultrafast amplifiers. These systems employ amplifier chain configurations customized to their individual geometries, scaling the low-power seed lasers to high power via multi-pass, multi-stage, and regenerative amplification techniques. The partially end-pumped InnoSlab amplifier is distinguished by its slab-shaped gain medium and a highly compact design. This design offers a large surface-to-volume ratio, moderate gain per pass, and reduced nonlinear effects, facilitating the amplification of low-power ultrafast seed laser pulses to kilowatt-level output power at high repetition rates in the multi-MHz range. This review highlights the characteristics of InnoSlab technology and its amplifier configurations, discussing recent advancements in new cavity designs aimed at enhancing gain and beam quality. Additionally, it covers the mechanisms of generating high peak power few-cycle pulses, including non-linear post-pulse compression. The review also explores the potential applications of InnoSlab systems for generating extreme ultraviolet (XUV) and terahertz (THz) frequencies.
ultrafast lasers / InnoSlab amplifier / multi-pass cell / hybrid resonator / Yb-doped materials
[1] |
T. Y. Fan and R. L. Byer, Diode laser-pumped solid-state lasers, IEEE J. Quantum Electron. 24(6), 895 (1988)
CrossRef
ADS
Google scholar
|
[2] |
V. Fomin,V. Gapontsev,E. Shcherbakov,A. Abramov,A. Ferin, D. Mochalov, 100 kW CW fiber laser for industrial applications, in: Proc. 2014 Int. Conf. Laser Opt., 1 (2014)
|
[3] |
E. Papastathopoulos, F. Baumann, O. Bocksrocker, T. Gottwald, A. Killi, B. Metzger, S. S. Schad, N. Speker, T. Ryba, and S. Zaske, High-power high-brightness disk lasers for advanced applications, SPIE LASE 116640M, 17 (2021)
CrossRef
ADS
Google scholar
|
[4] |
L. Liu, S. H. Zhou, Y. Liu, Z. Wang, G. Wang, and H. Zhao, The 5.2 kW Nd:YAG slab amplifier chain seeded by Nd: YVO4 InnoSlab laser, Chin. Phys. Lett. 34(6), 064202 (2017)
CrossRef
ADS
Google scholar
|
[5] |
A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, Optical damage limits to pulse energy from fibers, IEEE J. Sel. Top. Quantum Electron. 15(1), 153 (2009)
CrossRef
ADS
Google scholar
|
[6] |
J. Zou and X. Lin, High-power laser systems, Laser Photonics Rev. 16(5), 2100741 (2022)
CrossRef
ADS
Google scholar
|
[7] |
U. Brauch, C. Röcker, T. Graf, and M. Abdou, High‑power, high‑brightness solid‑state laser architectures and their characteristics, Appl. Phys. B 128(3), 58 (2022)
CrossRef
ADS
Google scholar
|
[8] |
A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Scalable concept for diode-pumped high-power solid-state lasers, Appl. Phys. B 58(5), 365 (1994)
CrossRef
ADS
Google scholar
|
[9] |
S. Xu, Y. Gao, X. Liu, Y. Chen, D. Ouyang, J. Zhao, M. Liu, X. Wu, C. Guo, C. Zhou, Q. Lve, and S. Ruan, High-repetition-rate and high-power efficient picosecond thin-disk regenerative amplifier, High Power Laser Sci. Eng. 12, e14 (2023)
CrossRef
ADS
Google scholar
|
[10] |
S. Xu, X. Liu, Y. Gao, Z. Ou, F. Javed, X. He, H. Lu, J. Chen, Y. Chen, D. Ouyang, J. Zhao, X. Wu, C. Guo, C. Zhou, Q. Lue, and S. Ruan, Thin-disk multi-pass amplifier for Kilowatt−Class ultrafast lasers, High Power Laser Sci. Eng. 12, e56 (2024)
CrossRef
ADS
Google scholar
|
[11] |
M. Ueffing, R. Lange, T. Pleyer, V. Pervak, T. Metzger, D. Sutter, Z. Major, T. Nubbemeyer, and F. Krausz, Direct regenerative amplification of femtosecond pulses to the multi-millijoule level, Opt. Lett. 41(16), 3840 (2016)
CrossRef
ADS
Google scholar
|
[12] |
A. Penzkofer, Solid state lasers, Prog. Quantum Electron. 12(4), 291 (1988)
CrossRef
ADS
Google scholar
|
[13] |
W. F. Krupke, Ytterbium solid-state lasers — the first decade, IEEE J. Sel. Top. Quantum Electron. 6(6), 1287 (2000)
CrossRef
ADS
Google scholar
|
[14] |
P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, Compact diode-pumped 1.1 kW Yb:YAG InnoSlab femtosecond amplifier, Opt. Lett. 35(24), 4169 (2010)
CrossRef
ADS
Google scholar
|
[15] |
P. Russbueldt,T. Mans,D. Hoffmann,S. Schippel, Ultrafast Laser Technology, Springer, Ch. 6, pp 117–134, 2016
|
[16] |
J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, Diode-pumped single-frequency-Nd:YGG-MOPA for water-vapor DIAL measurements: Design, setup and performance, Appl. Phys. B 102(4), 917 (2011)
CrossRef
ADS
Google scholar
|
[17] |
J. Löhring,J. Luttmann,R. Kasemann,M. Schlösser,J. Klein,H. D. Hoffmann,A. Amediek,C. Büdenbender,A. Fix,M. Wirth,M. Quatrevalet,G. Ehret, InnoSlab-based single-frequency MOPA for airborne lidar detection of CO2 and methane, Proc. SPIE, 8959, 92 (2014)
|
[18] |
M. Strotkamp, F. Elsen, J. Löhring, M. Traub, and D. Hoffmann, Two-stage InnoSlab amplifier for energy scaling from 100 to >500 mJ for future lidar applications, Appl. Opt. 56(10), 2886 (2017)
CrossRef
ADS
Google scholar
|
[19] |
K. Du, Optically pumped intensifying agent, in particular a solid intensifying agent, United States Patent, 6351477 B1, 2002
|
[20] |
K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, Partially end-pumped Nd:YAG slab laser with a hybrid resonator, Opt. Lett. 23(5), 370 (1998)
CrossRef
ADS
Google scholar
|
[21] |
K . Du, P. Loosen, and R. Poprawe, Optical amplifier arrangement for a solid-state laser, United States Patent, 6654163, 2003
|
[22] |
K. Du, Y. Liao, and P. Loosen, Nd:YAG slab laser end-pumped by laser-diode stacks and its beam shaping, Opt. Commun. 140(1-3), 53 (1997)
CrossRef
ADS
Google scholar
|
[23] |
P. Russbueldt, D. Hoffmann, M. Hofer, J. Lohring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, InnoSlab amplifiers, IEEE J. Sel. Top. Quantum Electron. 21(1), 447 (2015)
CrossRef
ADS
Google scholar
|
[24] |
P. Russbueldt,T. Mans,G. Rotarius,J. Weitenberg,H. D. Hoffmann,R. Poprawe, 400 W Yb:YAG InnoSlab fs-amplifier, Opt. Express 17(15), 12230 (2009)
|
[25] |
M. Najafi,
CrossRef
ADS
Google scholar
|
[26] |
S. Sang, H. Zhang, Y. Mao, X. Zhang, J. Zou, J. Xin, J. Xing, and Y. Jiang, Compact, high-average-power, nanosecond multi-pass Nd:YVO4 InnoSlab amplifier, Appl. Phys. B 121(2), 131 (2015)
CrossRef
ADS
Google scholar
|
[27] |
Y. Gao,J. Guo,Y. Huang,Z. Gao,Z. Gan, Z. Tu,X. Liang,R. Li, 417 W, 2.38 mJ InnoSlab amplifier compressible to a high pulse quality of 406 fs, Opt. Lett. 48(20), 5328 (2023)
|
[28] |
J. Guo, H. Lin, J. Li, P. Gao, and X. Liang, High power TEM00 picosecond output based on a Nd:GdVO4 discrete path InnoSlab amplifier, Opt. Lett. 41(12), 2875 (2016)
CrossRef
ADS
Google scholar
|
[29] |
Q. Gao, F. Javed, H. Zhang, and 2 12 W, Nd:YAG InnoSlab nanosecond laser amplifier, Proc. SPIE 11170, 455 (2019)
CrossRef
ADS
Google scholar
|
[30] |
Y. F. Mao,H. L. Zhang,J. H. Yuan,X. L. Hao,J. C. Xing, J. G. Xin,Y. Jiang, A high-power diode-pumped Nd:YVO4 slab amplifier with a hybrid resonator, Laser Phys. Lett. 13(6), 065005 (2016)
|
[31] |
F. Javed,H. Zhang,Q. Gao,X. Li,A. Imran, Y. Jiang, A high average power, compact 100 kHz, 11.6 ns Nd:YAG InnoSlab amplifier, Results Phys. 16, 102926 (2020)
|
[32] |
K. Z. Han, J. Ning, B. T. Zhang, Y. R. Wang, H. K. Zhang, H. K. Nie, X. L. Sun, and J. L. He, High power single-frequency InnoSlab amplifier, Appl. Opt. 55(20), 5341 (2016)
CrossRef
ADS
Google scholar
|
[33] |
N. N. Wang,X. L. Wang,T. Zhang,W. Zhang,X. H. Hu, H. Yuan,F. Li,Y. S. Wang,W. Zhao, 23.9 W, 985 fs chirped pulse amplification system based on Yb:YAG rod amplifier, IEEE Photonics J. 11(4), 1 (2019)
|
[34] |
D. Li and K. Du, Picosecond laser with 400 W average power and 1 mJ pulse energy, Proc. SPIE 7912, 79120N (2011)
CrossRef
ADS
Google scholar
|
[35] |
Y. Mao, L. Wang, and H. Zhang, Compact diode-pumped Nd:YVO4 slab ns-amplifier, Proc. SPIE 10684, 214–220 (2018)
CrossRef
ADS
Google scholar
|
[36] |
X. Zhang,J. Ye,X. Luo,X. Chen,L. Zhang, X. Xu,H. Ren,Y. Lu,Y. Ma,Q. Gao, J. Sun,W. Wang, 300 W two-stage Nd:YAG InnoSlab microsecond amplifier, Appl. Opt. 60(4), 971 (2021)
|
[37] |
Y. Chen,K. Liu,J. Yang,F. Yang,H. Gao, N. Zong,L. Yuan,Y. Lin,Z. Liu,Q. Peng, Y. Bo,D. Cui,Z. Xu, 8.2 mJ, 324 MW, 5 kHz picosecond MOPA system based on Nd:YAG slab amplifiers, J. Opt. 18(7), 075503 (2016)
|
[38] |
S. Guy, C. L. Bonner, D. P. Shepherd, D. C. Hanna, A. C. Tropper, and B. Ferrand, High-inversion densities in Nd:YAG: Upconversion and bleaching, IEEE J. Quantum Electron. 34(5), 900 (1998)
CrossRef
ADS
Google scholar
|
[39] |
D. Krennrich,R. Knappe,B. Henrich,R. Wallenstein,J. A. L’Huillier, A comprehensive study of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:YGdVO4 lasers operating at wavelengths of 0.9 and 1.3 μm. Part 1: Cw-operation, Appl. Phys. B 92(2), 165 (2008)
|
[40] |
J. E. Bernard and A. J. Alcock, High-efficiency diode-pumped Nd:YVO4 slab laser, Opt. Lett. 18(12), 968 (1993)
CrossRef
ADS
Google scholar
|
[41] |
H. Lin,J. Li,X. Liang, 105 W, <10 ps, TEM00 laser output based on an in-band pumped Nd:YVO4 InnoSlab amplifier, Opt. Lett. 37(13), 2634 (2012)
|
[42] |
Y. Mao,H. Zhang,X. Hao,J. Yuan,J. Xing, J. Xin,Y. Jiang, 8.4 mJ, 10 kHz, 36 ns, Nd:YVO4 slab amplifier, Opt. Express 24(10), 11017 (2016)
|
[43] |
C. Ma, Z. Liu, K. Liu, Y. Yu, X. J. Wang, Y. Bo, D. F. Cui, and Q. J. Peng, High efficiency, 41.6 W, 10 kHz picosecond output based on a Nd:YAG double-pass multi-folded InnoSlab amplifier, Opt. Laser Tech. 148, 107767 (2022)
CrossRef
ADS
Google scholar
|
[44] |
Y. Chen, F. Q. Li, K. Liu, H. Y. Xu, F. Yang, N. Zong, Y. D. Guo, S. J. Zhang, J. Y. Zhang, Q. J. Peng, Y. Bo, D. F. Cui, and Z. Y. Xu, High-efficiency 2 mJ 5 kHz picosecond green laser generation by Nd:YAG InnoSlab amplifier, IEEE Photonics Technol. Lett. 27(14), 1531 (2015)
CrossRef
ADS
Google scholar
|
[45] |
Y. F. Mao, H. L. Zhang, J. H. Cui, J. H. Yuan, X. L. Hao, J. Yi, 2 5 mJ, 5 KHz, and 3 ns, Nd:YAG discrete path slab amplifier using a hybrid resonator, Appl. Opt. 56(10), 2741 (2017)
CrossRef
ADS
Google scholar
|
[46] |
B. E. Schmidt, A. Hage, T. Mans, F. Legare, and H. J. Worner, Highly stable, 54 mJ Yb-InnoSlab laser platform at 0.5 kW average power, Opt. Express 25(15), 17549 (2017)
CrossRef
ADS
Google scholar
|
[47] |
K. Mecseki, M. K. R. Windeler, A. Miahnahri, J. S. Robinson, J. M. Fraser, A. R. Fry, and F. Tavella, High average power 88 W OPCPA system for high-repetition-rate experiments at the LCLS X-ray free-electron laser, Opt. Lett. 44(5), 1257 (2019)
CrossRef
ADS
Google scholar
|
[48] |
Y. Gao, J. Guo, Z. Gao, Y. Huang, Z. Tu, and X. Liang, High beam quality chirped pulse amplification laser based on plane−convex hybrid cavity InnoSlab amplifier, Opt. Laser Technol. 168, 109885 (2024)
CrossRef
ADS
Google scholar
|
[49] |
T. Mans, J. Dolkemeyer, P. Russbüldt, and C. Schnitzler, Highly flexible ultrafast laser system with 260 W average power, Proc. SPIE 7912, 174 (2011)
CrossRef
ADS
Google scholar
|
[50] |
T. Mans,C. Hönninger,J. Dolkemeyer,A. Letan,C. Schnitzler,E. Mottay, 200 W fs InnoSlab amplifier with 400 μJ pulse energy for industrial applications, Proc. SPIE 8599, 226 (2013)
|
[51] |
T. Mans, R. Graf, J. Dolkemeyer, and C. Schnitzler, Femtosecond InnoSlab amplifier with 300 W average power and pulse energies in the mJ-regime, Proc. SPIE 8959, 187 (2014)
CrossRef
ADS
Google scholar
|
[52] |
L. Von Der Wense, B. Seiferle, M. Laatiaoui, J. B. Neumayr, H. J. Maier, H. F. Wirth, C. Mokry, J. Runke, K. Eberhardt, C. E. Düllmann, N. G. Trautmann, and P. G. Thirolf, Direct detection of the 229Th nuclear clock transition, Nature 533(7601), 47 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[53] |
C. Benko, T. K. Allison, A. Cingöz, L. Hua, F. Labaye, D. C. Yost, and J. Ye, Extreme ultraviolet radiation with coherence time greater than 1 s, Nat. Photonics 8(7), 530 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[54] |
F. Labaye,M. Gaponenko,N. Modsching,P. Brochard,C. Paradis,S. Schilt,V. J. Wittwer,T. Sudmeyer, XUV sources based on intra-oscillator high harmonic generation with thin-disk lasers: Current status and prospects, IEEE J. Sel. Top. Quantum Electron. 25(4), 1 (2019)
|
[55] |
A. Dubietis, G. Jonušauskas, and A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal, Opt. Commun. 88(4−6), 437 (1992)
CrossRef
ADS
Google scholar
|
[56] |
G. Cerullo and S. De Silvestri, Ultrafast optical parametric amplifiers, Rev. Sci. Instrum. 74(1), 1 (2003)
CrossRef
ADS
Google scholar
|
[57] |
D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers, J. Opt. 12(1), 013001 (2010)
CrossRef
ADS
Google scholar
|
[58] |
D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun. 56(3), 219 (1985)
CrossRef
ADS
Google scholar
|
[59] |
C. Heese, A. E. Oehler, L. Gallmann, and U. Keller, High-energy picosecond Nd:YVO4 slab amplifier for OPCPA pumping, Appl. Phys. B 103(1), 5 (2011)
CrossRef
ADS
Google scholar
|
[60] |
M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, and F. Tavella, Yb:YAG InnoSlab amplifier: Efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification, Opt. Lett. 36(13), 2456 (2011)
CrossRef
ADS
Google scholar
|
[61] |
R. Riedel, M. Schulz, M. J. Prandolini, A. Hage, H. Höppner, T. Gottschall, J. Limpert, M. Drescher, and F. Tavella, Long-term stabilization of high power optical parametric chirped-pulse amplifier, Opt. Express 21(23), 28987 (2013)
CrossRef
ADS
Google scholar
|
[62] |
R. Riedel, A. Stephanides, M. J. Prandolini, B. Gronloh, B. Jungbluth, T. Mans, and F. Tavella, Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers, Opt. Lett. 39(6), 1422 (2014)
CrossRef
ADS
Google scholar
|
[63] |
M. Puppin,Y. Deng,O. Prochnow,J. Ahrens,T. Binhammer,U. Morgner,M. Krenz,M. Wolf, R. Ernstorfer, 500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser, Opt. Express 23(2), 1491 (2015)
|
[64] |
S. Hädrich, S. Demmler, J. Rothhardt, C. Jocher, J. Limpert, and A. Tünnermann, High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification, Opt. Lett. 36(3), 313 (2011)
CrossRef
ADS
Google scholar
|
[65] |
P. Rigaud, A. Van de Walle, M. Hanna, N. Forget, F. Guichard, Y. Zaouter, K. Guesmi, F. Druon, and P. Georges, Supercontinuum-seeded few-cycle mid-infrared OPCPA system, Opt. Express 24(23), 26494 (2016)
CrossRef
ADS
Google scholar
|
[66] |
M. K. R. Windeler,K. Mecseki,A. Miahnahri,J. S. Robinson,J. M. Fraser,A. R. Fry, F. Tavella, 100 W high-repetition-rate near-infrared optical parametric chirped pulse amplifier, Opt. Lett. 44(17), 4287 (2019)
|
[67] |
S. Hrisafov, J. Pupeikis, P. A. Chevreuil, F. Brunner, C. R. Phillips, L. Gallmann, and U. Keller, High-power few-cycle near-infrared OPCPA for soft X-ray generation at 100 kHz, Opt. Express 28(26), 40145 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[68] |
M. Kaumanns, V. Pervak, D. Kormin, V. Leshchenko, A. Kessel, M. Ueffing, Y. Chen, and T. Nubbemeyer, Multipass spectral broadening of 18 mJ pulses compressible from 13 ps to 41 fs, Opt. Lett. 43(23), 5877 (2018)
CrossRef
ADS
Google scholar
|
[69] |
J. Schulte, T. Sartorius, J. Weitenberg, A. Vernaleken, and P. Russbudeldt, Nonlinear pulse compression in a multi-pass cell, Opt. Lett. 41(19), 4511 (2016)
CrossRef
ADS
Google scholar
|
[70] |
M. Benner,M. Karst,P. Gierschke,H. Stark,M. Abdelaal,J. Limpert, High quality pulse post-compression in a multi-pass cell employing enhanced frequency chirping, ASSL, LAC 2023, Vol. 2023, pp 5–6 (2023)
|
[71] |
P. Gierschke, C. Grebing, M. Abdelaal, M. Lenski, J. Buldt, Z. Wang, T. Heuermann, M. Mueller, M. Gebhardt, J. Rothhardt, and J. Limpert, Nonlinear pulse compression to 51 W average power GW-class 35 fs pulses at 2 μm wavelength in a gas-filled multi-pass cell, Opt. Lett. 47(14), 3511 (2022)
CrossRef
ADS
Google scholar
|
[72] |
R. W. Boyd, Nonlinear Optics, 4th Ed., Vol. 2, Elsevier, 2020
|
[73] |
M. Seidel, G. Arisholm, J. Brons, V. Pervak, and O. Pronin, All solid-state spectral broadening: An average and peak power scalable method for compression of ultrashort pulses, Opt. Express 24(9), 9412 (2016)
CrossRef
ADS
Google scholar
|
[74] |
C. H. Lu, W. H. Wu, S. H. Kuo, J. Y. Guo, M. C. Chen, S. D. Yang, and A. H. Kung, Greater than 50 times compression of 1030 nm Yb:KGW laser pulses to single-cycle duration, Opt. Express 27(11), 15638 (2019)
CrossRef
ADS
Google scholar
|
[75] |
K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. S. J. Russell, Compressing μJ-level pulses from 250 fs to sub-10 fs at 38 MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages, Opt. Lett. 40(7), 1238 (2015)
CrossRef
ADS
Google scholar
|
[76] |
B. H. Chen, M. Kretschmar, D. Ehberger, A. Blumenstein, P. Simon, P. Baum, and T. Nagy, Compression of picosecond pulses from a thin-disk laser to 30 fs at 4 W average power, Opt. Express 26(4), 3861 (2018)
CrossRef
ADS
Google scholar
|
[77] |
X. Guo, S. Tokita, K. Yoshii, H. Nishioka, and J. Kawanaka, Generation of 300 nm bandwidth 0.5 mJ pulses near 1 μm in a single stage gas filled hollow core fiber, Opt. Express 25(18), 21171 (2017)
CrossRef
ADS
Google scholar
|
[78] |
L. Lavenu, M. Natile, F. Guichard, Y. Zaouter, M. Hanna, E. Mottay, and P. Georges, High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage, Opt. Express 25(7), 7530 (2017)
CrossRef
ADS
Google scholar
|
[79] |
T. Nagy, P. Simon, and L. Veisz, High-energy few-cycle pulses: Post-compression techniques, Adv. Phys. X 6(1), 1845795 (2021)
CrossRef
ADS
Google scholar
|
[80] |
A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H. D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, Single-pass high-harmonic generation at 208 MHz repetition rate, Opt. Lett. 36(17), 3428 (2011)
CrossRef
ADS
Google scholar
|
[81] |
Z. Zhang, H. Zhou, X. Chen, and Y. Bi, Design method of variable optical path length multi-pass cell, Appl. Phys. B 127(2), 12 (2021)
CrossRef
ADS
Google scholar
|
[82] |
J. Wu, T. Grabe, J. L. Götz, J. Trapp, A. S. de Souza, T. Biermann, A. Wolf, P. P. Ley, K. Duan, R. Lachmayer, and W. Ren, Linear scalability of dense-pattern Herriott-type multipass cell design, Appl. Phys. B 129(6), 87 (2023)
CrossRef
ADS
Google scholar
|
[83] |
J. U. White, Long optical paths of large aperture, J. Opt. Soc. Am. 32(5), 285 (1942)
CrossRef
ADS
Google scholar
|
[84] |
D. Herriott, H. Kogelnik, and R. Kompfner, Off-axis paths in spherical mirror interferometers, Appl. Opt. 3(4), 523–526 (1964)
CrossRef
ADS
Google scholar
|
[85] |
A. M. Kowalevicz, A. Sennaroglu, A. T. Zare, and J. G. Fujimoto, Design principles of q-preserving multipass-cavity femtosecond lasers, J. Opt. Soc. Am. B 23(4), 760 (2006)
CrossRef
ADS
Google scholar
|
[86] |
A. Sennaroglu and J. Fujimoto, Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers, Opt. Express 11(9), 1106 (2003)
CrossRef
ADS
Google scholar
|
[87] |
J. Weitenberg, A. Vernaleken, J. Schulte, A. Ozawa, T. Sartorius, V. Pervak, H. D. Hoffmann, T. Udem, P. Russbüldt, and T. W. Hänsch, Multi-pass-cell-based nonlinear pulse compression to 115 fs at 7.5 μJ pulse energy and 300 W average power, Opt. Express 25(17), 20502 (2017)
CrossRef
ADS
Google scholar
|
[88] |
P. Russbueldt, J. Weitenberg, J. Schulte, R. Meyer, C. Meinhardt, H. D. Hoffmann, and R. Poprawe, Scalable 30 fs laser source with 530 W average power, Opt. Lett. 44(21), 5222 (2019)
CrossRef
ADS
Google scholar
|
[89] |
M. Müller, J. Buldt, H. Stark, C. Grebing, and J. Limpert, Multipass cell for high-power few-cycle compression, Opt. Lett. 46(11), 2678 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[90] |
L. Lavenu, M. Natile, F. Guichard, Y. Zaouter, X. Delen, M. Hanna, E. Mottay, and P. Georges, Nonlinear pulse compression based on a gas-filled multipass cell, Opt. Lett. 43(10), 2252 (2018)
CrossRef
ADS
Google scholar
|
[91] |
A. Omar, T. Vogel, M. Hoffmann, and C. J. Saraceno, Spectral broadening of 2 mJ femtosecond pulses in a compact air-filled convex–concave multi-pass cell, Opt. Lett. 48(6), 1458 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[92] |
Y. Pfaff, G. Barbiero, M. Rampp, S. Klingebiel, J. Brons, C. Y. Teisset, H. Wang, R. Jung, J. Jaksic, A. H. Woldegeorgis, M. Trunk, A. R. Maier, C. J. Saraceno, and T. Metzger, Nonlinear pulse compression of a 200 mJ and 1 kW ultrafast thin-disk amplifier, Opt. Express 31(14), 22740 (2023)
CrossRef
ADS
Google scholar
|
[93] |
M. Kaumanns, D. Kormin, T. Nubbemeyer, V. Pervak, and S. Karsch, Spectral broadening of 112 mJ, 1.3 ps pulses at 5 kHz in a LG 10 multipass cell with compressibility to 37 fs, Opt. Letter 46(5), 929 (2021)
CrossRef
ADS
Google scholar
|
[94] |
C. Grebing, M. Müller, J. Buldt, H. Stark, and J. Limpert, Kilowatt-average-power compression of millijoule pulses in a gas-filled multi-pass cell, Opt. Lett. 45(22), 6250–6253 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[95] |
S. Rajhans, E. Escoto, N. Khodakovskiy, P. K. Velpula, B. Farace, U. Grosse-Wortmann, R. J. Shalloo, C. L. Arnold, K. Põder, J. Osterhoff, W. P. Leemans, I. Hartl, and C. M. Heyl, Post-compression of multi-millijoule picosecond pulses to few-cycles approaching the terawatt regime, Opt. Lett. 48(18), 4753 (2023)
CrossRef
ADS
Google scholar
|
[96] |
E. Escoto,A. L. Viotti,S. Alisauskas,H. Tünnermann,M. Seidel,K. Dudde,B. Manschwetus,I. Hartl,C. M. Heyl, Role of dispersion and compression ratio on the temporal contrast of SPM-broadened post-compressed pulses, CLEO/Europe-EQEC IEEE, pp 1-1 (2021)
|
[97] |
P. L. Kramer, M. K. R. Windeler, K. Mecseki, E. G. Champenois, M. C. Hoffmann, and F. Tavella, Enabling high repetition rate nonlinear THz science with a Kilowatt−Class sub-100 fs laser source, Opt. Express 28(11), 16951 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[98] |
S. Rajhans,P. K. Velpula,E. Escoto,R. Shalloo,B. Farace,K. Põder,J. Osterhoff,W. P. Leemans,I. Hartl,C. M. Heyl, Post-compression of 8.6 mJ ps-pulses from an Yb:YAG InnoSlab amplifier using a compact multi-pass cell, ASSL AW2A-6 (2021)
|
[99] |
T. Xin,J. Cui,Y. Mao,H. Zhang, 205 W laser-diode end-pumped Yb: YAG InnoSlab laser, Laser Phys. 27(6), 065001 (2017)
|
[100] |
Y. F. Mao, H. L. Zhang, L. Xu, B. Deng, J. C. Xing, J. G. Xin, and Y. Jiang, An 880-nm laser-diode end-pumped Nd:YVO4 slab laser with a hybrid resonator, Chin. Phys. Lett. 31(7), 074206 (2014)
CrossRef
ADS
Google scholar
|
[101] |
L. Cui, H. L. Zhang, L. Xu, J. Li, Y. Yan, C. Duan, P. F. Sha, and J. G. Xin, Laser-diode end-pumped Nd: YVO4 slab laser under direct pumping into the emitting level, Chin. Phys. Lett. 27(11), 114204 (2010)
CrossRef
ADS
Google scholar
|
[102] |
X. Li, F. Javed, H. Zhang, X. Liu, T. Chen, S. Yang, T. Zang, Y. Jiang, and J. Jiang, High power diode end-pumped 1.3 μm Nd:YAG InnoSlab laser, Results Phys. 37(2022), 105468 (2022)
CrossRef
ADS
Google scholar
|
[103] |
S. Zhang, T. Chen, X. Liu, H. Zhang, J. Wang, and H. Guo, Hybrid resonator 1319 nm Nd:YAG InnoSlab laser, Photonics 10(6), 625 (2023)
CrossRef
ADS
Google scholar
|
[104] |
X. Meng,X. Zhang,X. Chen,X. Luo,J. Ye, L. Zhang,Q. Gao,B. Lu, 170 W Nd:YAG InnoSlab laser at 1319 nm, Opt. Express 31(12), 19126 (2023)
|
[105] |
Y. F. Mao and L. Wang, Study of high power Tm: YLF InnoSlab wavelength-selected laser, Laser Phys. 29(11), 115004 (2019)
CrossRef
ADS
Google scholar
|
[106] |
H. Huang, P. Liu, X. Liu, H. Wang, L. Jin, and D. Shen, Near-diffraction-limited diode end-pumped 2 μm Tm:YAG InnoSlab laser, Laser Phys. Lett. 14(4), 045805 (2017)
CrossRef
ADS
Google scholar
|
[107] |
M. Schellhorn, S. Ngcobo, and C. Bollig, High-power diode-pumped Tm:YLF slab laser, Appl. Phys. B 94(2), 195 (2009)
CrossRef
ADS
Google scholar
|
[108] |
J. Li,S. H. Yang,A. Meissner,M. Hofer,D. Hoffmann, A 200 W INNOSLAB Tm:YLF laser, Laser Phys. Lett. 10(5), 055002 (2013)
|
[109] |
Y. F. Mao,Q. L. Long,J. M. Gao,Q. C. Wang,Y. Gao, L. Wang, 315 W, 1.94 μm, Tm:YAP InnoSlab laser, Laser Phys. 33(2), 025002 (2023)
|
[110] |
J. Gao,Q. Long,L. Wang,Y. Mao,Z. Xu, 40 W high beam quality Tm:YLF InnoSlab amplifier, Laser Phys. 33(2), 025001 (2023)
|
[111] |
X. Liu, H. Huang, D. Shen, X. Fan, W. Yao, H. Zhu, J. Zhang, and D. Tang, High-power LD end-pumped Tm:YAG ceramic slab laser, Appl. Phys. B 118(4), 533 (2015)
CrossRef
ADS
Google scholar
|
[112] |
Q. Wang, Q. Long, Y. Gao, J. Xue, Z. Xu, Y. Mao, and L. Wang, High-efficiency Ho:YLF slab laser with 125 W continuous-wave output power, Appl. Opt. 60(26), 8046 (2021)
CrossRef
ADS
Google scholar
|
[113] |
Y. F. Mao, Q. L. Long, and J. M. Gao, Hundred-watts-level Ho:YLF slab laser with good beam quality, Laser Phys. 34(5), 055001 (2024)
CrossRef
ADS
Google scholar
|
[114] |
N. Hodgson,M. Laha,T. S. Lee,H. Haloui,S. Heming,A. Steinkopff, Industrial ultrafast lasers − systems, processing fundamentals, and applications, CLEO 2019, pp 1–2, 2019
|
[115] |
K. Du, Unique performances and favourable applications of InnoSlab lasers, Proc. SPIE 7193, 607 (2009)
CrossRef
ADS
Google scholar
|
[116] |
D. Wortmann, T. Mans, and J. Weitenberg, Multi-100 W average power fs-laser for material processing applications, ICALEO 2009 2009(1), 856 (2009)
CrossRef
ADS
Google scholar
|
[117] |
C. Schnitzler, T. G. Mans, J. Dolkemeyer, and P. Dittmann, High power, high energy, and high flexibility: Powerful ultrafast lasers based on InnoSlab technology, Proc. SPIE 10911, 1091103 (2019)
CrossRef
ADS
Google scholar
|
[118] |
J. G. Eden, Erratum: High-order harmonic generation and other intense optical field-matter interactions: Review of recent experimental and theoretical advances, Prog. Quantum Electron. 29(3-5), 257 (2005)
CrossRef
ADS
Google scholar
|
[119] |
R. Locher, L. Castiglioni, M. Lucchini, M. Greif, L. Gallmann, J. Osterwalder, M. Hengsberger, and U. Keller, Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry, Optica 2(5), 405 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[120] |
C. H. Zhang and U. Thumm, Attosecond photoelectron spectroscopy of metal surfaces, Phys. Rev. Lett. 102(12), 123601 (2009)
CrossRef
ADS
Google scholar
|
[121] |
A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, Direct frequency comb spectroscopy in the extreme ultraviolet, Nature 482(7383), 68 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[122] |
J. Moreno, F. Schmid, J. Weitenberg, S. G. Karshenboim, T. W. Hänsch, T. Udem, and A. Ozawa, Atomic physics toward XUV frequency comb spectroscopy of the 1 S−2 S transition in He+, Eur. Phys. J. D 77(4), 67 (2023)
CrossRef
ADS
Google scholar
|
[123] |
S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann, High harmonic generation by novel fiber amplifier based sources, Opt. Express 18(19), 20242 (2010)
CrossRef
ADS
Google scholar
|
[124] |
K. Ajito and Y. Ueno, THz chemical imaging for biological applications, IEEE Trans. Terahertz Sci. Tech. 1(1), 293 (2011)
CrossRef
ADS
Google scholar
|
[125] |
M. C. Nuss, K. W. Goossen, J. P. Gordon, P. M. Mankiewich, M. L. O’Malley, and M. Bhushan, Terahertz time-domain measurement of the conductivity and superconducting band gap in niobium, J. Appl. Phys. 70(4), 2238 (1991)
CrossRef
ADS
Google scholar
|
[126] |
B. Green, S. Kovalev, V. Asgekar, G. Geloni, U. Lehnert,
CrossRef
ADS
Google scholar
|
[127] |
V. Y. Fedorov and S. Tzortzakis, Powerful terahertz waves from long-wavelength infrared laser filaments, Light Sci. Appl. 9(1), 186 (2020)
CrossRef
ADS
Google scholar
|
[128] |
S. W. Huang, E. Granados, W. R. Huang, K. H. Hong, L. E. Zapata, and F. X. Kärtner, High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate, Opt. Lett. 38(5), 796 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |