
Holevo Cramér−Rao bound for multi-parameter estimation in nonlinear interferometers
Mengyao Zhou, Hongmei Ma, Liqing Chen, Weiping Zhang, Chun-Hua Yuan
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 032204.
Holevo Cramér−Rao bound for multi-parameter estimation in nonlinear interferometers
Due to the potential of quantum advantage to surpass the standard quantum limit (SQL), nonlinear interferometers have garnered significant attention from researchers in the field of precision measurement. However, many practical applications require multiparameter estimation. In this work, we discuss the precision limit of multi-parameter estimation of pure Gaussian states based on nonlinear interferometers, and derive the Holevo Cramér−Rao bound (HCRB) for the case where both modes undergo displacement estimation. Furthermore, we compare our analytical results with the quantum Cramér−Rao bound based on the symmetric logarithmic derivative (SLD-CRB), and with the result of the dual homodyne measurement. Through numerical analysis, we find that the HCRB equals the result of the dual homodyne measurement, whereas SLD-CRB is not saturable at small squeezed parameters. Therefore, this indicates that the HCRB is tight. Additionally, we provide intuitive analysis and visual representation of our numerical results in phase space.
Holevo Cramér−Rao bound / nonlinear interferometers / multi-parameter estimation / dual homodyne measurement
Fig.1 Schematic of the nonlinear interferometers for displacement estimation. The two modes of the light field go through parameter encoding for unknown displacements after passing through the nonlinear beam splitter (NBS), then they mix at the beam splitter (BS), and finally, the dual homodyne measurement is performed on the output states. |
Fig.2 Precision bound as a function of squeezed parameter |
Fig.3 Phase space evolution of the two-mode light field after passing through the interferometer. The three yellow circles on the left correspond to the transformations of mode |
[1] |
A. A. Michelson and E. W. Morley , On the relative motion of the earth and the luminiferous ether, Am. J. Sci. s3-34(203), 333 (1887)
CrossRef
ADS
Google scholar
|
[2] |
A. R. Thompson,J. M. Moran,G. W. Swenson, Interferometry and Synthesis in Radio Astronomy, Springer Nature, 2017
|
[3] |
L. Zehnder , Ein neuer interferenzrefraktor, Zeitschrift für Instrumentenkunde 11, 275 (1891)
|
[4] |
L. Mach , Ueber einen interferenzrefraktor, Zeitschrift für Instrumentenkunde 12, 89 (1892)
|
[5] |
S. L. Braunstein , Quantum limits on precision measurements of phase, Phys. Rev. Lett. 69(25), 3598 (1992)
CrossRef
ADS
Google scholar
|
[6] |
V. Giovannetti , S. Lloyd , and L. Maccone , Quantum metrology, Phys. Rev. Lett. 96(1), 010401 (2006)
CrossRef
ADS
Google scholar
|
[7] |
B. Yurke , S. L. McCall , and J. R. Klauder , Su(2) and SU(1, 1) interferometers, Phys. Rev. A 33(6), 4033 (1986)
CrossRef
ADS
Google scholar
|
[8] |
F. Hudelist , J. Kong , C. Liu , J. Jing , Z. Ou , and W. Zhang , Quantum metrology with parametric amplifier-based photon correlation interferometers, Nat. Commun. 5(1), 3049 (2014)
CrossRef
ADS
Google scholar
|
[9] |
D. Li , C. H. Yuan , Z. Ou , and W. Zhang , The phase sensitivity of an SU(1, 1) interferometer with coherent and squeezed-vacuum light, New J. Phys. 16(7), 073020 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
D. Li , B. T. Gard , Y. Gao , C. H. Yuan , W. Zhang , H. Lee , and J. P. Dowling , Phase sensitivity at the Heisenberg limit in an SU(1, 1) interferometer via parity detection, Phys. Rev. A 94(6), 063840 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
S. L. Braunstein and C. M. Caves , Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72(22), 3439 (1994)
CrossRef
ADS
Google scholar
|
[12] |
V. Giovannetti , S. Lloyd , and L. Maccone , Quantum-enhanced measurements: Beating the standard quantum limit, Science 306(5700), 1330 (2004)
CrossRef
ADS
Google scholar
|
[13] |
V. Giovannetti , S. Lloyd , and L. Maccone , Advances in quantum metrology, Nat. Photonics 5(4), 222 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
M. G. Paris , Quantum estimation for quantum technology, Int. J. Quant. Inf. 7(Supp01), 125 (2009)
CrossRef
ADS
Google scholar
|
[15] |
F. Albarelli,M. Barbieri,M. G. Genoni,I. Gianani, A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging, Phys. Lett. A 384(12), 126311 (2020)
|
[16] |
J. Sahota and D. F. James , Quantum-enhanced phase estimation with an amplified Bell state, Phys. Rev. A 88(6), 063820 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
Y. Watanabe , T. Sagawa , and M. Ueda , Optimal measurement on noisy quantum systems, Phys. Rev. Lett. 104(2), 020401 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
S. Z. Ang , G. I. Harris , W. P. Bowen , and M. Tsang , Optomechanical parameter estimation, New J. Phys. 15(10), 103028 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
A. Monras and F. Illuminati , Information geometry of gaussian channels, Phys. Rev. A 81(6), 062326 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
M. D. Lang and C. M. Caves , Optimal quantum-enhanced interferometry, Phys. Rev. A 90(2), 025802 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
H. Yuan , Sequential feedback scheme outperforms the parallel scheme for Hamiltonian parameter estimation, Phys. Rev. Lett. 117(16), 160801 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
P. Kok , J. Dunningham , and J. F. Ralph , Role of entanglement in calibrating optical quantum gyroscopes, Phys. Rev. A 95(1), 012326 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
M. Jarzyna and R. Demkowicz-Dobrzanski , Quantum interferometry with and without an external phase reference, Phys. Rev. A 85(1), 011801 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
M. Takeoka , K. P. Seshadreesan , C. You , S. Izumi , and J. P. Dowling , Fundamental precision limit of a Mach–Zehnder interferometric sensor when one of the inputs is the vacuum, Phys. Rev. A 96(5), 052118 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[25] |
C. You , S. Adhikari , X. Ma , M. Sasaki , M. Takeoka , and J. P. Dowling , Conclusive precision bounds for SU(1, 1) interferometers, Phys. Rev. A 99(4), 042122 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
C. W. Helstrom , Quantum detection and estimation theory, J. Stat. Phys. 1(2), 231 (1969)
CrossRef
ADS
Google scholar
|
[27] |
A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Vol. 1, Springer Science & Business Media, 2011
|
[28] |
M. Szczykulska , T. Baumgratz , and A. Datta , Multiparameter quantum metrology, Adv. Phys. X 1(4), 621 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
H. Yuen and M. Lax , Multiple-parameter quantum estimation and measurement of non-self-adjoint observables, IEEE Trans. Inf. Theory 19(6), 740 (1973)
CrossRef
ADS
Google scholar
|
[30] |
V. P. Belavkin, Generalized uncertainty relations and efficient measurements in quantum systems, arXiv: 2004)
|
[31] |
A. S. Holevo , Statistical decision theory for quantum systems, J. Multivariate Anal. 3(4), 337 (1973)
CrossRef
ADS
Google scholar
|
[32] |
A. Carollo , B. Spagnolo , A. A. Dubkov , and D. Valenti , On quantumness in multi-parameter quantum estimation, J. Stat. Mech. 2019(9), 094010 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[33] |
S. Razavian , M. G. Paris , and M. G. Genoni , On the quantumness of multiparameter estimation problems for qubit systems, Entropy (Basel) 22(11), 1197 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
A. Candeloro , M. G. Paris , and M. G. Genoni , On the properties of the asymptotic incompatibility measure in multiparameter quantum estimation, J. Phys. A 54(48), 485301 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[35] |
S. Massar and S. Popescu , Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett. 74(8), 1259 (1995)
CrossRef
ADS
Google scholar
|
[36] |
J. Kahn and M. Guta , Local asymptotic normality for finite dimensional quantum systems, Commun. Math. Phys. 289(2), 597 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[37] |
K. Yamagata , A. Fujiwara , and R. D. Gill , Quantum local asymptotic normality based on a new quantum likelihood ratio, Ann. Stat. 41(4), 2197 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[38] |
Y. Yang , G. Chiribella , and M. Hayashi , Attaining the ultimate precision limit in quantum state estimation, Commun. Math. Phys. 368(1), 223 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[39] |
M. Tsang , F. Albarelli , and A. Datta , Quantum semiparametric estimation, Phys. Rev. X 10(3), 031023 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[40] |
K. Matsumoto, A new approach to the Cramér–Rao-type bound of the pure-state model, J. Phys. Math. Gen. 35(13), 3111 (2002)
|
[41] |
F. Albarelli , J. F. Friel , and A. Datta , Evaluating the Holevo Cramér–Rao bound for multiparameter quantum metrology, Phys. Rev. Lett. 123(20), 200503 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
M. Bradshaw , P. K. Lam , and S. M. Assad , Ultimate precision of joint quadrature parameter estimation with a gaussian probe, Phys. Rev. A 97(1), 012106 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
M. Bradshaw,S. M. Assad,P. K. Lam, A tight Cramér–Rao bound for joint parameter estimation with a pure two-mode squeezed probe, Phys. Lett. A 381(32), 2598 (2017)
|
[44] |
G. Bressanini , M. G. Genoni , M. Kim , and M. G. Paris , Multi-parameter quantum estimation of single- and two-mode pure gaussian states, J. Phys. A 57(31), 315305 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[45] |
A. Fujiwara and H. Nagaoka , Quantum fisher metric and estimation for pure state models, Phys. Lett. A 201(2−3), 119 (1995)
CrossRef
ADS
Google scholar
|
[46] |
L. O. Conlon , J. Suzuki , P. K. Lam , and S. M. Assad , Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements, npj Quantum Inf. 7, 110 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[47] |
L. O. Conlon , P. K. Lam , and S. M. Assad , Multiparameter estimation with two-qubit probes in noisy channels, Entropy (Basel) 25(8), 1122 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[48] |
J. Suzuki , Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem, J. Math. Phys. 57(4), 042201 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[49] |
S. K. Yung , L. O. Conlon , J. Zhao , P. K. Lam , and S. M. Assad , Comparison of estimation limits for quantum two-parameter estimation, Phys. Rev. Res. 6(3), 033315 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[50] |
M. Jarzyna, Quantum limits to polarization measurement of classical light, in: Quantum 2.0, Optica Publishing Group, 2022, pp QW2A–39
|
[51] |
L. O. Conlon , B. Shajilal , A. Walsh , J. Zhao , J. Janousek , P. K. Lam , and S. M. Assad , Verifying the security of a continuous variable quantum communication protocol via quantum metrology, npj Quantum Inf. 10, 35 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[52] |
J. W. Gardner , T. Gefen , S. A. Haine , J. J. Hope , and Y. Chen , Achieving the fundamental quantum limit of linear waveform estimation, Phys. Rev. Lett. 132(13), 130801 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[53] |
J. Kong , Z. Ou , and W. Zhang , Phase-measurement sensitivity beyond the standard quantum limit in an interferometer consisting of a parametric amplifier and a beam splitter, Phys. Rev. A 87(2), 023825 (2013)
CrossRef
ADS
Google scholar
|
[54] |
M. A. Nielsen,I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2010
|
[55] |
H. Cramer, Mathematical Methods of Statistics, Vol. 26, Princeton University Press, 1999
|
[56] |
J. Suzuki , Y. Yang , and M. Hayashi , Quantum state estimation with nuisance parameters, J. Phys. A Math. Theor. 53(45), 453001 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[57] |
C. W. Helstrom , Minimum mean-squared error of estimates in quantum statistics, Phys. Lett. A 25(2), 101 (1967)
CrossRef
ADS
Google scholar
|
[58] |
D. Petz,C. Ghinea, Introduction to quantum fisher information, in: Quantum Probability and Related Topics, World Scientific, 2011, pp 261–281
|
[59] |
A. S. Holevo, Noncommutative analogues of the Cramér–Rao inequality in the quantum measurement theory, in: Proceedings of the Third Japan—USSR Symposium on Probability Theory, Springer, 2006, pp 194–222
|
[60] |
Q. K. Gong , X. L. Hu , D. Li , C. H. Yuan , Z. Ou , and W. Zhang , Intramode-correlation-enhanced phase sensitivities in an SU(1, 1) interferometer, Phys. Rev. A 96(3), 033809 (2017)
CrossRef
ADS
arXiv
Google scholar
|
/
〈 |
|
〉 |