High-flux and stable MgF molecular beam for one-dimensional Doppler cooling applications

Di Wu, Kang Yan, Jin Wei, Taojing Dong, Chenyu Zu, Yong Xia, Jianping Yin

PDF(8186 KB)
PDF(8186 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 032201. DOI: 10.15302/frontphys.2025.032201
RESEARCH ARTICLE

High-flux and stable MgF molecular beam for one-dimensional Doppler cooling applications

Author information +
History +

Abstract

A novel cryogenic MgF molecular beam, characterized by high flux and exceptional stability, has been successfully generated within a helium buffer gas environment. This achievement is facilitated by the innovative use of an in-cell stepper motor, which continuously rotates the sample rod during laser ablation. Through meticulous optimization of the ablation laser energy, the position of the ablation spot, and the gas flow rate, among other critical parameters, the resulting MgF beam exhibits a remarkable forward velocity of 209 m/s and an impressive brightness of approximately 1.36 × 1012 molecules per pulse per steradian per internal state. Subsequent attempts at one-dimensional Doppler cooling of the MgF beam have been made, with theoretical calculations closely aligning with experimental outcomes. These findings demonstrate a significant compression in the transverse spatial distribution of the molecular beam, from 7.8 to 6.5 mm, and a substantial cooling of the transverse temperature, from 8.1 to 5.6 mK. This work lays a crucial foundation for the advancement of molecular slowing and magneto-optical trapping techniques for MgF molecules.

Graphical abstract

Keywords

cold molecules / buffer gas cooling / laser cooling of molecules / Doppler cooling

Cite this article

Download citation ▾
Di Wu, Kang Yan, Jin Wei, Taojing Dong, Chenyu Zu, Yong Xia, Jianping Yin. High-flux and stable MgF molecular beam for one-dimensional Doppler cooling applications. Front. Phys., 2025, 20(3): 032201 https://doi.org/10.15302/frontphys.2025.032201

References

[1]
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
CrossRef ADS Google scholar
[2]
Y. C. Bao, S. S. Yu, L. Anderegg, E. Chae, W. Ketterle, K. K. Ni, and J. M. Doyle, Dipolar spin-exchange and entanglement between molecules in an optical tweezer array, Science 382(6675), 1138 (2023)
CrossRef ADS Google scholar
[3]
C. M. Holland, Y. Lu, and L. W. Cheuk, On-demand entanglement of molecules in a reconfigurable optical tweezer array, Science 382(6675), 1143 (2023)
CrossRef ADS arXiv Google scholar
[4]
S. F. Yelin, K. Kirby, and R. Côté, Schemes for robust quantum computation with polar molecules, Phys. Rev. A 74(5), 050301 (2006)
CrossRef ADS Google scholar
[5]
G. Pupillo, A. Griessner, A. Micheli, M. Ortner, D. W. Wang, and P. Zoller, Cold atoms and molecules in self-assembled dipolar lattices, Phys. Rev. Lett. 100(5), 050402 (2008)
CrossRef ADS arXiv Google scholar
[6]
M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, Prospects for quantum computing with an array of ultracold polar paramagnetic molecules, J. Chem. Phys. 144(9), 094301 (2016)
CrossRef ADS arXiv Google scholar
[7]
K. K. Ni, T. Rosenband, and D. D. Grimes, Dipolar exchange quantum logic gate with polar molecules, Chem. Sci. (Camb.) 9(33), 6830 (2018)
CrossRef ADS arXiv Google scholar
[8]
D. DeMille, J. M. Doyle, and A. O. Sushkov, Probing the frontiers of particle physics with tabletop-scale experiments, Science 357(6355), 990 (2017)
CrossRef ADS Google scholar
[9]
J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
CrossRef ADS arXiv Google scholar
[10]
L. Anderegg, N. B. Vilas, C. Hallas, P. Robichaud, A. Jadbabaie, J. M. Doyle, and N. R. Hutzler, Quantum control of trapped polyatomic molecules for eEDM searches, Science 382(6671), 665 (2023)
CrossRef ADS arXiv Google scholar
[11]
C. Chin, V. V. Flambaum, and M. G. Kozlov, Ultracold molecules: New probes on the variation of fundamental constants, New J. Phys. 11(5), 055048 (2009)
CrossRef ADS arXiv Google scholar
[12]
J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Improved measurement of the shape of the electron, Nature 473(7348), 493 (2011)
CrossRef ADS Google scholar
[13]
T. Langen, G. Valtolina, D. Wang, and J. Ye, Quantum state manipulation and cooling of ultracold molecules, Nat. Phys. 20(5), 702 (2024)
CrossRef ADS arXiv Google scholar
[14]
J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)
CrossRef ADS arXiv Google scholar
[15]
M. T. Hummon,T. V. Tscherbul,J. Kłos,H. I. Lu, E. Tsikata,W. C. Campbell,A. Dalgarno,J. M. Doyle,N. Cold, NH+ collisions in a magnetic trap, Phys. Rev. Lett. 106(5), 053201 (2011)
[16]
K. Jachymski, M. Gronowski, and M. Tomza, Collisional losses of ultracold molecules due to intermediate complex formation, Phys. Rev. A 106(4), L041301 (2022)
CrossRef ADS arXiv Google scholar
[17]
S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. De Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules, Science 327(5967), 853 (2010)
CrossRef ADS arXiv Google scholar
[18]
M. D. Rosa, Laser-cooling molecules: Concept, candidates, and supporting hyperfine-resolved measurements of rotational lines in the A−X(0, 0) band of CaH, Eur. Phys. J. D 31(2), 395 (2004)
CrossRef ADS Google scholar
[19]
B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magneto-optical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)
CrossRef ADS arXiv Google scholar
[20]
N. R. Hutzler, H. I. Lu, and J. M. Doyle, The buffer gas beam: An intense, cold, and slow source for atoms and molecules, Chem. Rev. 112(9), 4803 (2012)
CrossRef ADS arXiv Google scholar
[21]
J. F. Barry, E. S. Shuman, D. DeMille, and A. Bright, Slow cryogenic molecular beam source for free radicals, Phys. Chem. Chem. Phys. 13(42), 18936 (2011)
CrossRef ADS Google scholar
[22]
S. C. Wright, M. Doppelbauer, S. Hofsäss, H. Christian Schewe, B. Sartakov, G. Meijer, S. Truppe, C ryogenic buffer gas beams of AlF, CaF , MgF , YbF , Al , and Ca , Yb and NO – a comparison, Mol. Phys. 121(17−18), e2146541 (2023)
CrossRef ADS arXiv Google scholar
[23]
S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, High-flux beam source for cold, slow atoms or molecules, Phys. Rev. Lett. 95(17), 173201 (2005)
CrossRef ADS Google scholar
[24]
J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, Magneto-optical trapping of a diatomic molecule, Nature 512(7514), 286 (2014)
CrossRef ADS arXiv Google scholar
[25]
S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)
CrossRef ADS arXiv Google scholar
[26]
L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)
CrossRef ADS arXiv Google scholar
[27]
A. L. Collopy,S. Ding,Y. Wu, I. A. Finneran,L. Anderegg,B. L. Augenbraun,J. M. Doyle,J. Ye, 3D magneto-optical trap of yttrium monoxide, Phys. Rev. Lett. 121(21), 213201 (2018)
[28]
J. C. Shaw and D. J. McCarron, Bright, continuous beams of cold free radicals, Phys. Rev. A 102(4), 041302 (2020)
CrossRef ADS arXiv Google scholar
[29]
N. B. Vilas, C. Hallas, L. Anderegg, P. Robichaud, A. Winnicki, D. Mitra, and J. M. Doyle, Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule, Nature 606(7912), 70 (2022)
CrossRef ADS arXiv Google scholar
[30]
Z. X. Zeng, S. Deng, S. Yang, and B. Yan, Three-dimensional magneto-optical trapping of barium monofluoride, Phys. Rev. Lett. 133(14), 143404 (2024)
CrossRef ADS arXiv Google scholar
[31]
J. J. Burau, P. Aggarwal, K. Mehling, and J. Ye, Blue-detuned magneto-optical trap of molecules, Phys. Rev. Lett. 130(19), 193401 (2023)
CrossRef ADS arXiv Google scholar
[32]
T. K. Langin and D. DeMille, Toward improved loading, cooling, and trapping of molecules in magneto-optical traps, New J. Phys. 25(4), 043005 (2023)
CrossRef ADS arXiv Google scholar
[33]
E. S. Shuman, J. F. Barry, D. R. Glenn, and D. DeMille, Radiative force from optical cycling on a diatomic molecule, Phys. Rev. Lett. 103(22), 223001 (2009)
CrossRef ADS arXiv Google scholar
[34]
M. T. Hummon,M. Yeo,B. K. Stuhl, A. L. Collopy,Y. Xia,J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
[35]
W. H. Bu, Y. H. Zhang, Q. Liang, T. Chen, and B. Yan, Saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride molecules, Front. Phys. 17(6), 62502 (2022)
CrossRef ADS arXiv Google scholar
[36]
P. Aggarwal, H. L. Bethlem, A. Borschevsky, M. Denis, K. Esajas, P. A. B. Haase, Y. Hao, S. Hoekstra, K. Jungmann, T. B. Meijknecht, M. C. Mooij, R. G. E. Timmermans, W. Ubachs, L. Willmann, and A. Zapara, Measuring the electric dipole moment of the electron in BaF, Eur. Phys. J. D 72(11), 197 (2018)
CrossRef ADS arXiv Google scholar
[37]
E. Chae, L. Anderegg, B. L. Augenbraun, A. Ravi, B. Hemmerling, N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, One-dimensional magneto-optical compression of a cold CaF molecular beam, New J. Phys. 19(3), 033035 (2017)
CrossRef ADS arXiv Google scholar
[38]
L. Caldwell, J. A. Devlin, H. J. Williams, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Deep laser cooling and efficient magnetic compression of molecules, Phys. Rev. Lett. 123(3), 033202 (2019)
CrossRef ADS arXiv Google scholar
[39]
S. Hofsäss, M. Doppelbauer, S. C. Wright, S. Kray, B. G. Sartakov, J. Pérez-Ríos, G. Meijer, and S. Truppe, Optical cycling of AlF molecules, New J. Phys. 23(7), 075001 (2021)
CrossRef ADS arXiv Google scholar
[40]
M. Xia, R. X. Gu, K. Yan, D. Wu, L. Xu, Y. Xia, and J. P. Yin, Destabilization of dark states in MgF molecules, Phys. Rev. A 103(1), 013321 (2021)
CrossRef ADS Google scholar
[41]
R. X. Gu, K. Yan, D. Wu, J. Wei, Y. Xia, and J. P. Yin, Radiative force from optical cycling on magnesium monofluoride, Phys. Rev. A 105(4), 042806 (2022)
CrossRef ADS Google scholar
[42]
M. Doppelbauer, S. C. Wright, S. Hofsäss, B. G. Sartakov, G. Meijer, and S. Truppe, Hyperfine-resolved optical spectroscopy of the A2Π ← X2Σ+ transition in MgF, J. Chem. Phys. 156(13), 134301 (2022)
CrossRef ADS arXiv Google scholar
[43]
K. Yan, R. X. Gu, D. Wu, J. Wei, Y. Xia, and J. P. Yin, Simulation of EOM-based frequency-chirped laser slowing of MgF radicals, Front. Phys. 17(4), 42502 (2022)
CrossRef ADS Google scholar
[44]
X. Alauze, J. Lim, M. A. Trigatzis, S. Swarbrick, F. J. Collings, N. J. Fitch, B. E. Sauer, and M. R. Tarbutt, An ultracold molecular beam for testing fundamental physics, Quantum Sci. Technol. 6(4), 044005 (2021)
CrossRef ADS arXiv Google scholar
[45]
P. Aggarwal,H. L. Bethlem,A. Boeschoten,A. Borschevsky,K. Esajas,Y. Hao, S. Hoekstra,K. Jungmann,V. R. Marshall,T. B. Meijknecht,M. C. Mooij,R. G. E. Timmermans,A. Touwen,W. Ubachs,L. Willmann,Y. Yin,A. Zapara, A supersonic laser ablation beam source with narrow velocity spreads, Rev. Sci. Instrum. 92(3), 033202 (2021)
[46]
R. X. Gu, M. Xia, K. Yan, D. Wu, J. Wei, L. Xu, Y. Xia, and J. P. Yin, Rotational analysis and hyperfine structures of A2Π1/2 → X2Σ1/2 transition in 25, 26MgF isotope molecules, J Quant. Spectrosc. Ra. 278, 108015 (2022)
CrossRef ADS Google scholar
[47]
S. Truppe, H. J. Williams, N. J. Fitch, M. Hambach, T. E. Wall, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing, New J. Phys. 19(2), 022001 (2017)
CrossRef ADS arXiv Google scholar
[48]
J. A. Devlin and M. R. Tarbutt, Laser cooling and magneto-optical trapping of molecules analyzed using optical bloch equations and the Fokker−Planck−Kramers equation, Phys. Rev. A 98(6), 063415 (2018)
CrossRef ADS arXiv Google scholar
[49]
M. T. Hummon,M. Yeo,B. K. Stuhl, A. L. Collopy,Y. Xia,J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
[50]
N. B. Vilas, C. Hallas, L. Anderegg, P. Robichaud, A. Winnicki, D. Mitra, and J. M. Doyle, Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule, Nature 606(7912), 70 (2022)
CrossRef ADS arXiv Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

Financial supports are from the National Natural Science Foundation of China under Nos. 12174115, 91836103, and 11834003.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(8186 KB)

Accesses

Citations

Detail

Sections
Recommended

/