
Holographic einstein ring of deformed AdS-Schwarzschild black holes
Jin-Yu Gui, Ke-Jian He, Huan Ye, Xiao-Xiong Zeng
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 025202.
Holographic einstein ring of deformed AdS-Schwarzschild black holes
In this work, the wave optics is employed to investigate the Einstein ring of a deformed AdS-Schwarzschild black hole (BH). When the source is fixed on the AdS boundary, one can obtain the corresponding response function generated on the antipodal side of the boundary. By utilizing a virtual optical system equipped with a convex lens, we are able to capture an image of the BH’s holographic Einstein ring on the screen. The influence of the relevant physical parameters and the observer’s position on the characteristics of the Einstein ring is also investigated, revealing that variations in the observer’s position result in a transition of the displayed image from an axisymmetric ring to an arc, ultimately converging into a solitary point of luminosity. In addition, variations in the relevant physical parameters naturally exert influences on the Einstein ring. The photon ring of the BH was also investigated from a geometric optics perspective, and the numerical results indicate that the incident angle of the photon ring aligns with that of the Einstein ring. In the context of modified gravity theories, the investigation of Einstein rings formed by deformed AdS-Schwarzschild BH is expected to not only contribute to advancing the development of gravitational theories but also facilitate a more comprehensive understanding of spacetime geometry and the physical properties of BHs, thereby distinguishing them from Schwarzschild BH.
deformed AdS-Schwarzschild black hole / AdS/CFT correspondence / Einstein ring / wave optics
Fig.2 (a) Effect of different |
Fig.15 (a) Comparing the Einstein ring radius between the geometric optics and wave optics for different values of |
[1] |
J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2(2), 231 (1998)
CrossRef
ADS
Google scholar
|
[2] |
M. Natsuume, AdS/CFT duality user guide, Lect. Notes Phys. 903, 1 (2015)
CrossRef
ADS
Google scholar
|
[3] |
S. A. Hartnoll,C. P. Herzog,G. T. Horowitz, Holographic superconductors, J. High Energy Phys. 12 (2008), 015
|
[4] |
S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101(3), 031601 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
S. S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78(6), 065034 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
M. Čubrović, J. Zaanen, and K. Schalm, String theory, quantum phase transitions, and the emergent Fermi liquid, Science 325(5939), 439 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[7] |
H. Liu, J. McGreevy, and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83(6), 065029 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
T. Faulkner, H. Liu, J. McGreevy, D. Vegh, and E mergent quantum criticality, Fermi surfaces, and AdS2, Phys. Rev. D 83(12), 125002 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
S. A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, Towards strange metallic holography, J. High Energy Phys. 2010(4), 120 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
S. S. Pal, Model building in AdS/CMT: DC conductivity and Hall angle, Phys. Rev. D 84(12), 126009 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
B. S. Kim, E. Kiritsis, and C. Panagopoulos, Holographic quantum criticality and strange metal transport, New J. Phys. 14(4), 043045 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[12] |
E. Mefford and G. T. Horowitz, Simple holographic insulator, Phys. Rev. D 90(8), 084042 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[13] |
E. Kiritsis and J. Ren, On holographic insulators and supersolids, J. High Energy Phys. 2015(9), 168 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
A. Donos and J. P. Gauntlett, Novel metals and insulators from holography, J. High Energy Phys. 2014, 7 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
K. Akiyama, et al. [Event Horizon Telescope],
CrossRef
ADS
arXiv
Google scholar
|
[16] |
K. Akiyama,et al. [Event Horizon Telescope],
|
[17] |
J. Shipley and S. R. Dolan, Binary black hole shadows, chaotic scattering and the Cantor set, Class. Quantum Gravity 33(17), 175001 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
C. Bambi and K. Freese, Apparent shape of super-spinning black holes, Phys. Rev. D 79(4), 043002 (2009)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
F. Atamurotov, A. Abdujabbarov, and B. Ahmedov, Shadow of rotating Hořava–Lifshitz black hole, Astrophys. Space Sci. 348(1), 179 (2013)
CrossRef
ADS
Google scholar
|
[20] |
K. J. He, J. T. Yao, X. Zhang, and X. Li, Shadows and photon motions in the axially symmetric Finslerian extension of a Schwarzschild black hole, Phys. Rev. D 109(6), 064049 (2024)
CrossRef
ADS
Google scholar
|
[21] |
K. J. He, S. C. Tan, and G. P. Li, Influence of torsion charge on shadow and observation signature of black hole surrounded by various profiles of accretions, Eur. Phys. J. C 82(1), 81 (2022)
CrossRef
ADS
Google scholar
|
[22] |
K. J. He, S. Guo, S. C. Tan, and G. P. Li, Shadow images and observed luminosity of the Bardeen black hole surrounded by different accretions, Chin. Phys. C 46(8), 085106 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[23] |
G. P. Li and K. J. He, Observational appearances of a f(R) global monopole black hole illuminated by various accretions, Eur. Phys. J. C 81(11), 1018 (2021)
CrossRef
ADS
Google scholar
|
[24] |
K. J. He, X. Zhang, and X. Li, Shadows and observation intensity of black holes in the Randall–Sundrum brane world model, Chin. Phys. C 46(7), 075103 (2022)
CrossRef
ADS
Google scholar
|
[25] |
A. K. Mishra, S. Chakraborty, and S. Sarkar, Understanding photon sphere and black hole shadow in dynamically evolving spacetimes, Phys. Rev. D 99(10), 104080 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
P. G. Nedkova, V. K. Tinchev, and S. S. Yazadjiev, Shadow of a rotating traversable wormhole, Phys. Rev. D 88(12), 124019 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
Y. X. Chen, H. B. Zheng, K. J. He, G. P. Li, and Q. Q. Jiang, Additional observational features of the thin-shell wormhole by considering quantum corrections, Chin. Phys. C 48(12), 125104 (2024)
CrossRef
ADS
Google scholar
|
[28] |
K. J. He, Z. Luo, S. Guo, and G. P. Li, Observational appearance and extra photon rings of an asymmetric thin-shell wormhole with a Bardeen profile, Chin. Phys. C 48(6), 065105 (2024)
CrossRef
ADS
Google scholar
|
[29] |
R. Shaikh, P. Kocherlakota, R. Narayan, and P. S. Joshi, Shadows of spherically symmetric black holes and naked singularities, Mon. Not. R. Astron. Soc. 482(1), 52 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
K. Hashimoto, S. Kinoshita, and K. Murata, Einstein rings in holography, Phys. Rev. Lett. 123(3), 031602 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
K. Hashimoto, S. Kinoshita, and K. Murata, Imaging black holes through the AdS/CFT correspondence, Phys. Rev. D 101(6), 066018 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
Y. Kaku, K. Murata, and J. Tsujimura, Observing black holes through superconductors, J. High Energy Phys. 09(9), 138 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[33] |
Y. Liu, Q. Chen, X. X. Zeng, H. Zhang, and W. Zhang, Holographic Einstein ring of a charged AdS black hole, J. High Energy Phys. 2022(10), 189 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
X. X. Zeng, K. J. He, J. Pu, G. Li, and Q. Q. Jiang, Holographic Einstein rings of a Gauss–Bonnet AdS black hole, Eur. Phys. J. C 83(10), 897 (2023)
CrossRef
ADS
Google scholar
|
[35] |
X. X. Zeng, L. F. Li, and P. Xu, Holographic Einstein rings of a black hole with a global monopole, Eur. Phys. J. C 84(7), 714 (2024)
CrossRef
ADS
Google scholar
|
[36] |
X. X. Zeng,M. I. Aslam,R. Saleem,X. Y. Hu, Holographic Einstein rings of black holes in scalar-tensor-vector gravity, arXiv: gr-qc] (2023)
arXiv
|
[37] |
X. Y. Hu, X. X. Zeng, L. F. Li, and P. Xu, Holographic study on Einstein ring for a charged black hole in conformal gravity, Results Phys. 61, 107707 (2024)
CrossRef
ADS
Google scholar
|
[38] |
G. P. Li, K. J. He, X. Y. Hu, and Q. Q. Jiang, Holographic images of an AdS black hole within the framework of f(R) gravity theory, Front. Phys. (Beijing) 19(5), 54202 (2024)
CrossRef
ADS
Google scholar
|
[39] |
K. J. He, Y. W. Han, and G. P. Li, Holographic image features of Hayward-AdS black hole surrounded by quintessence dark energy, Phys. Dark Univ. 44, 101468 (2024)
CrossRef
ADS
Google scholar
|
[40] |
Z. Luo,K. J. He,J. Li, Holographic Einstein rings of AdS black holes in Horndeski theory, arXiv: gr-qc] (2024)
arXiv
|
[41] |
X. X. Zeng, L. F. Li, P. Li, B. Liang, and P. Xu, Holographic images of a charged black hole in Lorentz symmetry breaking massive gravity, Sci. China Phys. Mech. Astron. 68(2), 220412 (2025)
CrossRef
ADS
Google scholar
|
[42] |
A. S. Khan and F. Ali, The dynamics of particles around time conformal AdS-Schwarzschild black hole, Phys. Dark Univ. 26, 100389 (2019)
CrossRef
ADS
Google scholar
|
[43] |
L. G. C. Gentile, P. A. Grassi, and A. Mezzalira, Introduction to Khovanov homologies I. Unreduced Jones superpolynomial, J. High Energy Phys. 2013, 65 (2013)
CrossRef
ADS
arXiv
Google scholar
|
[44] |
J. Dunn and C. Warnick, The Klein–Gordon equation on the toric AdS-Schwarzschild black hole, Class. Quantum Gravity 33(12), 125010 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[45] |
T. K. Dey, Phase transition of AdS–Schwarzschild black hole and gauge theory dual in the presence of external string cloud, Int. J. Mod. Phys. A 33(33), 1850193 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[46] |
N. Banerjee, A. Bhattacharjee, and A. Mitra, Classical Soft Theorem in the AdS-Schwarzschild spacetime in small cosmological constant limit, J. High Energy Phys. 2021, 38 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[47] |
M. R. Khosravipoor and M. Farhoudi, Thermodynamics of deformed AdS-Schwarzschild black hole, Eur. Phys. J. C 83(11), 1045 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[48] |
I. R. Klebanov and E. Witten, Ads/CFT correspondence and symmetry breaking, Nucl. Phys. B 556(1−2), 89 (1999)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |