Layered semiconducting electrides in p-block metal oxides
Jiaqi Dai, Feng Yang, Cong Wang, Fei Pang, Zhihai Cheng, Wei Ji
Layered semiconducting electrides in p-block metal oxides
In conventional electrides, excess electrons are localized in crystal voids to serve as anions. Most of these electrides are metallic and the metal cations are primarily from the s-block, d-block, or rare-earth elements. Here, we report a class of p-block metal-based electrides found in bilayer SnO and PbO, which are semiconducting and feature electride states in both the valence band (VB) and conduction band (CB), as referred to 2D “bipolar” electrides. These bilayers are hybrid electrides where excess electrons are localized in the interlayer region and hybridize with the orbitals of Sn atoms in the VB, exhibiting strong covalent-like interactions with neighboring metal atoms. Compared to previously studied hybrid electrides, the higher electronegativity of Sn and Pb enhances these covalent-like interactions, leading to largely enhanced semiconducting bandgap of up to 2.5 eV. Moreover, the CBM primarily arises from the overlap between metal states and interstitial charges, denoting a potential electride and forming a free-electron-like (FEL) state with small effective mass. This state offers high carrier mobilities for both electron and hole in bilayer SnO, suggesting its potential as a promising p-type semiconductor material.
semiconducting / electrides / p-block metals / layered / covalent / hybrid / bipolar
[1] |
J. L. Dye and M. G. DeBacker, Physical and chemical properties of alkalides and electrides, Annu. Rev. Phys. Chem. 38(1), 271 (1987)
CrossRef
ADS
Google scholar
|
[2] |
A. Walsh and D. O. Scanlon, Electron excess in alkaline earth sub-nitrides: 2D electron gas or 3D electride, J. Mater. Chem. C 1(22), 3525 (2013)
CrossRef
ADS
Google scholar
|
[3] |
J. L. Dye, Electrides: Early examples of quantum confinement, Acc. Chem. Res. 42(10), 1564 (2009)
CrossRef
ADS
Google scholar
|
[4] |
S. Zhao, Z. Li, and J. Yang, Obtaining two-dimensional electron gas in free space without resorting to electron doping: An electride based design, J. Am. Chem. Soc. 136(38), 13313 (2014)
CrossRef
ADS
Google scholar
|
[5] |
J. Lv, Y. Wang, L. Zhu, and Y. Ma, Predicted novel high-pressure phases of lithium, Phys. Rev. Lett. 106(1), 015503 (2011)
CrossRef
ADS
Google scholar
|
[6] |
S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e−), Science 301(5633), 626 (2003)
CrossRef
ADS
Google scholar
|
[7] |
J. Wang, K. Hanzawa, H. Hiramatsu, J. Kim, N. Umezawa, K. Iwanaka, T. Tada, and H. Hosono, Exploration of stable strontium phosphide-based electrides: Theoretical structure prediction and experimental validation, J. Am. Chem. Soc. 139(44), 15668 (2017)
CrossRef
ADS
Google scholar
|
[8] |
Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano, and H. Hosono, Water durable electride Y5Si3: Electronic structure and catalytic activity for ammonia synthesis, J. Am. Chem. Soc. 138(12), 3970 (2016)
CrossRef
ADS
Google scholar
|
[9] |
Y. Zhang, Z. Xiao, T. Kamiya, and H. Hosono, Electron confinement in channel spaces for one-dimensional electride, J. Phys. Chem. Lett. 6(24), 4966 (2015)
CrossRef
ADS
Google scholar
|
[10] |
K. Lee, S. W. Kim, Y. Toda, S. Matsuishi, and H. Hosono, Dicalcium nitride as a two-dimensional electride with an anionic electron layer, Nature 494(7437), 336 (2013)
CrossRef
ADS
Google scholar
|
[11] |
J. Y. You, B. Gu, G. Su, and Y. P. Feng, Emergent kagome electrides, J. Am. Chem. Soc. 144(12), 5527 (2022)
CrossRef
ADS
Google scholar
|
[12] |
X. Zhang, Z. Xiao, H. Lei, Y. Toda, S. Matsuishi, T. Kamiya, S. Ueda, and H. Hosono, Two-dimensional transition-metal electride Y2C, Chem. Mater. 26(22), 6638 (2014)
CrossRef
ADS
Google scholar
|
[13] |
T. Inoshita, S. Jeong, N. Hamada, and H. Hosono, Exploration for two-dimensional electrides via database screening and ab initio calculation, Phys. Rev. X 4(3), 031023 (2014)
CrossRef
ADS
Google scholar
|
[14] |
S. Kanno, T. Tada, T. Utsumi, K. Nakamura, and H. Hosono, Electronic correlation strength of inorganic electrides from first principles, J. Phys. Chem. Lett. 12(50), 12020 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
M. Miyakawa, S. W. Kim, M. Hirano, Y. Kohama, H. Kawaji, T. Atake, H. Ikegami, K. Kono, and H. Hosono, Superconductivity in an inorganic electride 12CaO·7Al2O3:e−, J. Am. Chem. Soc. 129(23), 7270 (2007)
CrossRef
ADS
Google scholar
|
[16] |
M. Yi, Y. Zhang, Z. X. Shen, and D. Lu, Role of the orbital degree of freedom in iron-based superconductors, npj Quantum Mater. 2, 57 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
X. Huang, L. Duan, Z. Zhang, C. Fang, L. Chen, Q. Wang, Y. Zhang, W. Shen, X. Jia, L. Wu, and B. Wan, Uncovering 0D and 1D electrides with low work function in a Sc–P system, J. Phys. Chem. C 126(48), 20710 (2022)
CrossRef
ADS
Google scholar
|
[18] |
S. Guan, S. A. Yang, L. Zhu, J. Hu, Y. Yao, Electronic, dielectric, and lasmonic properties of two-dimensional electride materials X2pN (X=Ca, Sr): A first-principles study, Sci. Rep. 5(1), 12285 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S. W. Kim, M. Hara, and H. Hosono, Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store, Nat. Chem. 4(11), 934 (2012)
CrossRef
ADS
Google scholar
|
[20] |
M. Hattori, S. Iijima, T. Nakao, H. Hosono, and M. Hara, Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C, Nat. Commun. 11(1), 2001 (2020)
CrossRef
ADS
Google scholar
|
[21] |
T. N. Ye, Y. Lu, Z. Xiao, J. Li, T. Nakao, H. Abe, Y. Niwa, M. Kitano, T. Tada, and H. Hosono, Palladium-bearing intermetallic electride as an efficient and stable catalyst for Suzuki cross-coupling reactions, Nat. Commun. 10(1), 5653 (2019)
CrossRef
ADS
Google scholar
|
[22] |
H. Hosono and M. Kitano, Advances in materials and applications of inorganic electrides, Chem. Rev. 121(5), 3121 (2021)
CrossRef
ADS
Google scholar
|
[23] |
J. Hu,B. Xu,S. A. Yang,S. Guan,C. Ouyang,Y. Yao, 2D electrides as promising anode materials for Na-ion batteries from first-principles study, ACS Appl. Mater. Interfaces 7(43), 24016 (2015)
|
[24] |
W. Li, J. Liu, and D. Zhao, Mesoporous materials for energy conversion and storage devices, Nat. Rev. Mater. 1(6), 16023 (2016)
CrossRef
ADS
Google scholar
|
[25] |
W. Li, C. Liu, C. Gu, J. H. Choi, S. Wang, and J. Jiang, Interlayer charge transfer regulates single-atom catalytic activity on electride/graphene 2D heterojunctions, J. Am. Chem. Soc. 145(8), 4774 (2023)
CrossRef
ADS
Google scholar
|
[26] |
W. Meng, X. Zhang, Y. Liu, X. Dai, G. Liu, Y. Gu, E. P. Kenny, and L. Kou, Multifold fermions and Fermi arcs boosted catalysis in nanoporous electride 12CaO·7Al2O3, Adv. Sci. (Weinh.) 10(6), 2205940 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
D. L. Druffel, A. H. Woomer, K. L. Kuntz, J. T. Pawlik, and S. C. Warren, Electrons on the surface of 2D materials: From layered electrides to 2D electrenes, J. Mater. Chem. C 5(43), 11196 (2017)
CrossRef
ADS
Google scholar
|
[28] |
M. Hirayama, S. Matsuishi, H. Hosono, and S. Murakami, Electrides as a new platform of topological materials, Phys. Rev. X 8(3), 031067 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
H. Tamatsukuri, Y. Murakami, Y. Kuramoto, H. Sagayama, M. Matsuura, Y. Kawakita, S. Matsuishi, Y. Washio, T. Inoshita, N. Hamada, and H. Hosono, Magnetism induced by interlayer electrons in the quasi-two-dimensional electride Y2C: Inelastic neutron scattering study, Phys. Rev. B 102(22), 224406 (2020)
CrossRef
ADS
Google scholar
|
[30] |
T. Inoshita, S. Saito, and H. Hosono, Floating interlayer and surface electrons in 2D materials: Graphite, electrides, and electrenes, Small Sci. 1(9), 2100020 (2021)
CrossRef
ADS
Google scholar
|
[31] |
S. Liu, C. Wang, L. Liu, J. H. Choi, H. J. Kim, Y. Jia, C. H. Park, and J. H. Cho, Ferromagnetic Weyl fermions in two-dimensional layered electride Gd2C, Phys. Rev. Lett. 125(18), 187203 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
S. H. Kang, J. Bang, K. Chung, C. N. Nandadasa, G. Han, S. Lee, K. H. Lee, K. Lee, Y. Ma, S. H. Oh, S. G. Kim, Y. M. Kim, and S. W. Kim, Water- and acid-stable self-passivated dihafnium sulfide electride and its persistent electrocatalytic reaction, Sci. Adv. 6(23), eaba7416 (2020)
CrossRef
ADS
Google scholar
|
[33] |
L. M. McRae, R. C. Radomsky, J. T. Pawlik, D. L. Druffel, J. D. Sundberg, M. G. Lanetti, C. L. Donley, K. L. White, and S. C. Warren, Sc2C, a 2D semiconducting electride, J. Am. Chem. Soc. 144(24), 10862 (2022)
CrossRef
ADS
Google scholar
|
[34] |
S. G. Dale and E. R. Johnson, Theoretical descriptors of electrides, J. Phys. Chem. A 122(49), 9371 (2018)
CrossRef
ADS
Google scholar
|
[35] |
A. D. Becke,K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys. 92(9), 5397 (1990)
|
[36] |
H. Mizoguchi, Y. Muraba, D. C. Fredrickson, S. Matsuishi, T. Kamiya, and H. Hosono, The unique electronic structure of Mg2Si: Shaping the conduction bands of semiconductors with multicenter bonding, Angew. Chem. Int. Ed. 56(34), 10135 (2017)
CrossRef
ADS
Google scholar
|
[37] |
C. Zhang, R. Wang, H. Mishra, and Y. Liu, Two-dimensional semiconductors with high intrinsic carrier mobility at room temperature, Phys. Rev. Lett. 130(8), 087001 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[38] |
J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, Accurate and numerically efficient r2SCAN meta-generalized gradient approximation, J. Phys. Chem. Lett. 11(19), 8208 (2020)
CrossRef
ADS
Google scholar
|
[39] |
J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[40] |
P. Kang, V. Michaud-Rioux, X. H. Kong, G. H. Yu, and H. Guo, Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures, 2D Mater. 4, 045014 (2017)
CrossRef
ADS
Google scholar
|
[41] |
J. Qiao, Y. Pan, F. Yang, C. Wang, Y. Chai, and W. Ji, Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties, Sci. Bull. (Beijing) 63(3), 159 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[42] |
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994)
CrossRef
ADS
Google scholar
|
[43] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |