Layered semiconducting electrides in p-block metal oxides

Jiaqi Dai, Feng Yang, Cong Wang, Fei Pang, Zhihai Cheng, Wei Ji

PDF(3065 KB)
PDF(3065 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 024207. DOI: 10.15302/frontphys.2025.024207
RESEARCH ARTICLE

Layered semiconducting electrides in p-block metal oxides

Author information +
History +

Abstract

In conventional electrides, excess electrons are localized in crystal voids to serve as anions. Most of these electrides are metallic and the metal cations are primarily from the s-block, d-block, or rare-earth elements. Here, we report a class of p-block metal-based electrides found in bilayer SnO and PbO, which are semiconducting and feature electride states in both the valence band (VB) and conduction band (CB), as referred to 2D “bipolar” electrides. These bilayers are hybrid electrides where excess electrons are localized in the interlayer region and hybridize with the orbitals of Sn atoms in the VB, exhibiting strong covalent-like interactions with neighboring metal atoms. Compared to previously studied hybrid electrides, the higher electronegativity of Sn and Pb enhances these covalent-like interactions, leading to largely enhanced semiconducting bandgap of up to 2.5 eV. Moreover, the CBM primarily arises from the overlap between metal states and interstitial charges, denoting a potential electride and forming a free-electron-like (FEL) state with small effective mass. This state offers high carrier mobilities for both electron and hole in bilayer SnO, suggesting its potential as a promising p-type semiconductor material.

Graphical abstract

Keywords

semiconducting / electrides / p-block metals / layered / covalent / hybrid / bipolar

Cite this article

Download citation ▾
Jiaqi Dai, Feng Yang, Cong Wang, Fei Pang, Zhihai Cheng, Wei Ji. Layered semiconducting electrides in p-block metal oxides. Front. Phys., 2025, 20(2): 024207 https://doi.org/10.15302/frontphys.2025.024207

References

[1]
J. L. Dye and M. G. DeBacker, Physical and chemical properties of alkalides and electrides, Annu. Rev. Phys. Chem. 38(1), 271 (1987)
CrossRef ADS Google scholar
[2]
A. Walsh and D. O. Scanlon, Electron excess in alkaline earth sub-nitrides: 2D electron gas or 3D electride, J. Mater. Chem. C 1(22), 3525 (2013)
CrossRef ADS Google scholar
[3]
J. L. Dye, Electrides: Early examples of quantum confinement, Acc. Chem. Res. 42(10), 1564 (2009)
CrossRef ADS Google scholar
[4]
S. Zhao, Z. Li, and J. Yang, Obtaining two-dimensional electron gas in free space without resorting to electron doping: An electride based design, J. Am. Chem. Soc. 136(38), 13313 (2014)
CrossRef ADS Google scholar
[5]
J. Lv, Y. Wang, L. Zhu, and Y. Ma, Predicted novel high-pressure phases of lithium, Phys. Rev. Lett. 106(1), 015503 (2011)
CrossRef ADS Google scholar
[6]
S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, and H. Hosono, High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e), Science 301(5633), 626 (2003)
CrossRef ADS Google scholar
[7]
J. Wang, K. Hanzawa, H. Hiramatsu, J. Kim, N. Umezawa, K. Iwanaka, T. Tada, and H. Hosono, Exploration of stable strontium phosphide-based electrides: Theoretical structure prediction and experimental validation, J. Am. Chem. Soc. 139(44), 15668 (2017)
CrossRef ADS Google scholar
[8]
Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano, and H. Hosono, Water durable electride Y5Si3: Electronic structure and catalytic activity for ammonia synthesis, J. Am. Chem. Soc. 138(12), 3970 (2016)
CrossRef ADS Google scholar
[9]
Y. Zhang, Z. Xiao, T. Kamiya, and H. Hosono, Electron confinement in channel spaces for one-dimensional electride, J. Phys. Chem. Lett. 6(24), 4966 (2015)
CrossRef ADS Google scholar
[10]
K. Lee, S. W. Kim, Y. Toda, S. Matsuishi, and H. Hosono, Dicalcium nitride as a two-dimensional electride with an anionic electron layer, Nature 494(7437), 336 (2013)
CrossRef ADS Google scholar
[11]
J. Y. You, B. Gu, G. Su, and Y. P. Feng, Emergent kagome electrides, J. Am. Chem. Soc. 144(12), 5527 (2022)
CrossRef ADS Google scholar
[12]
X. Zhang, Z. Xiao, H. Lei, Y. Toda, S. Matsuishi, T. Kamiya, S. Ueda, and H. Hosono, Two-dimensional transition-metal electride Y2C, Chem. Mater. 26(22), 6638 (2014)
CrossRef ADS Google scholar
[13]
T. Inoshita, S. Jeong, N. Hamada, and H. Hosono, Exploration for two-dimensional electrides via database screening and ab initio calculation, Phys. Rev. X 4(3), 031023 (2014)
CrossRef ADS Google scholar
[14]
S. Kanno, T. Tada, T. Utsumi, K. Nakamura, and H. Hosono, Electronic correlation strength of inorganic electrides from first principles, J. Phys. Chem. Lett. 12(50), 12020 (2021)
CrossRef ADS arXiv Google scholar
[15]
M. Miyakawa, S. W. Kim, M. Hirano, Y. Kohama, H. Kawaji, T. Atake, H. Ikegami, K. Kono, and H. Hosono, Superconductivity in an inorganic electride 12CaO·7Al2O3:e, J. Am. Chem. Soc. 129(23), 7270 (2007)
CrossRef ADS Google scholar
[16]
M. Yi, Y. Zhang, Z. X. Shen, and D. Lu, Role of the orbital degree of freedom in iron-based superconductors, npj Quantum Mater. 2, 57 (2017)
CrossRef ADS arXiv Google scholar
[17]
X. Huang, L. Duan, Z. Zhang, C. Fang, L. Chen, Q. Wang, Y. Zhang, W. Shen, X. Jia, L. Wu, and B. Wan, Uncovering 0D and 1D electrides with low work function in a Sc–P system, J. Phys. Chem. C 126(48), 20710 (2022)
CrossRef ADS Google scholar
[18]
S. Guan, S. A. Yang, L. Zhu, J. Hu, Y. Yao, Electronic, dielectric, and lasmonic properties of two-dimensional electride materials X2pN (X=Ca, Sr): A first-principles study, Sci. Rep. 5(1), 12285 (2015)
CrossRef ADS arXiv Google scholar
[19]
M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S. W. Kim, M. Hara, and H. Hosono, Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store, Nat. Chem. 4(11), 934 (2012)
CrossRef ADS Google scholar
[20]
M. Hattori, S. Iijima, T. Nakao, H. Hosono, and M. Hara, Solid solution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C, Nat. Commun. 11(1), 2001 (2020)
CrossRef ADS Google scholar
[21]
T. N. Ye, Y. Lu, Z. Xiao, J. Li, T. Nakao, H. Abe, Y. Niwa, M. Kitano, T. Tada, and H. Hosono, Palladium-bearing intermetallic electride as an efficient and stable catalyst for Suzuki cross-coupling reactions, Nat. Commun. 10(1), 5653 (2019)
CrossRef ADS Google scholar
[22]
H. Hosono and M. Kitano, Advances in materials and applications of inorganic electrides, Chem. Rev. 121(5), 3121 (2021)
CrossRef ADS Google scholar
[23]
J. Hu,B. Xu,S. A. Yang,S. Guan,C. Ouyang,Y. Yao, 2D electrides as promising anode materials for Na-ion batteries from first-principles study, ACS Appl. Mater. Interfaces 7(43), 24016 (2015)
[24]
W. Li, J. Liu, and D. Zhao, Mesoporous materials for energy conversion and storage devices, Nat. Rev. Mater. 1(6), 16023 (2016)
CrossRef ADS Google scholar
[25]
W. Li, C. Liu, C. Gu, J. H. Choi, S. Wang, and J. Jiang, Interlayer charge transfer regulates single-atom catalytic activity on electride/graphene 2D heterojunctions, J. Am. Chem. Soc. 145(8), 4774 (2023)
CrossRef ADS Google scholar
[26]
W. Meng, X. Zhang, Y. Liu, X. Dai, G. Liu, Y. Gu, E. P. Kenny, and L. Kou, Multifold fermions and Fermi arcs boosted catalysis in nanoporous electride 12CaO·7Al2O3, Adv. Sci. (Weinh.) 10(6), 2205940 (2023)
CrossRef ADS arXiv Google scholar
[27]
D. L. Druffel, A. H. Woomer, K. L. Kuntz, J. T. Pawlik, and S. C. Warren, Electrons on the surface of 2D materials: From layered electrides to 2D electrenes, J. Mater. Chem. C 5(43), 11196 (2017)
CrossRef ADS Google scholar
[28]
M. Hirayama, S. Matsuishi, H. Hosono, and S. Murakami, Electrides as a new platform of topological materials, Phys. Rev. X 8(3), 031067 (2018)
CrossRef ADS arXiv Google scholar
[29]
H. Tamatsukuri, Y. Murakami, Y. Kuramoto, H. Sagayama, M. Matsuura, Y. Kawakita, S. Matsuishi, Y. Washio, T. Inoshita, N. Hamada, and H. Hosono, Magnetism induced by interlayer electrons in the quasi-two-dimensional electride Y2C: Inelastic neutron scattering study, Phys. Rev. B 102(22), 224406 (2020)
CrossRef ADS Google scholar
[30]
T. Inoshita, S. Saito, and H. Hosono, Floating interlayer and surface electrons in 2D materials: Graphite, electrides, and electrenes, Small Sci. 1(9), 2100020 (2021)
CrossRef ADS Google scholar
[31]
S. Liu, C. Wang, L. Liu, J. H. Choi, H. J. Kim, Y. Jia, C. H. Park, and J. H. Cho, Ferromagnetic Weyl fermions in two-dimensional layered electride Gd2C, Phys. Rev. Lett. 125(18), 187203 (2020)
CrossRef ADS arXiv Google scholar
[32]
S. H. Kang, J. Bang, K. Chung, C. N. Nandadasa, G. Han, S. Lee, K. H. Lee, K. Lee, Y. Ma, S. H. Oh, S. G. Kim, Y. M. Kim, and S. W. Kim, Water- and acid-stable self-passivated dihafnium sulfide electride and its persistent electrocatalytic reaction, Sci. Adv. 6(23), eaba7416 (2020)
CrossRef ADS Google scholar
[33]
L. M. McRae, R. C. Radomsky, J. T. Pawlik, D. L. Druffel, J. D. Sundberg, M. G. Lanetti, C. L. Donley, K. L. White, and S. C. Warren, Sc2C, a 2D semiconducting electride, J. Am. Chem. Soc. 144(24), 10862 (2022)
CrossRef ADS Google scholar
[34]
S. G. Dale and E. R. Johnson, Theoretical descriptors of electrides, J. Phys. Chem. A 122(49), 9371 (2018)
CrossRef ADS Google scholar
[35]
A. D. Becke,K. E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys. 92(9), 5397 (1990)
[36]
H. Mizoguchi, Y. Muraba, D. C. Fredrickson, S. Matsuishi, T. Kamiya, and H. Hosono, The unique electronic structure of Mg2Si: Shaping the conduction bands of semiconductors with multicenter bonding, Angew. Chem. Int. Ed. 56(34), 10135 (2017)
CrossRef ADS Google scholar
[37]
C. Zhang, R. Wang, H. Mishra, and Y. Liu, Two-dimensional semiconductors with high intrinsic carrier mobility at room temperature, Phys. Rev. Lett. 130(8), 087001 (2023)
CrossRef ADS arXiv Google scholar
[38]
J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, Accurate and numerically efficient r2SCAN meta-generalized gradient approximation, J. Phys. Chem. Lett. 11(19), 8208 (2020)
CrossRef ADS Google scholar
[39]
J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun. 5(1), 4475 (2014)
CrossRef ADS arXiv Google scholar
[40]
P. Kang, V. Michaud-Rioux, X. H. Kong, G. H. Yu, and H. Guo, Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures, 2D Mater. 4, 045014 (2017)
CrossRef ADS Google scholar
[41]
J. Qiao, Y. Pan, F. Yang, C. Wang, Y. Chai, and W. Ji, Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties, Sci. Bull. (Beijing) 63(3), 159 (2018)
CrossRef ADS arXiv Google scholar
[42]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994)
CrossRef ADS Google scholar
[43]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.024207.

Acknowledgements

We gratefully acknowledge the financial support from the Ministry of Science and Technology (MOST) of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 11974422 and 12104504), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 22XNKJ30) (W.J.). J.D. was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University of China. All calculations for this study were performed at the Physics Lab of High-Performance Computing (PLHPC) and the Public Computing Cloud (PCC) of Renmin University of China.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3065 KB)

Accesses

Citations

Detail

Sections
Recommended

/