Defect control during CVD-growth for high performance MoS2-based self-powered photodetector
Xinyue Pan, Zhe Xu, Jinhua Li, Kaixi Shi, Mingze Xu, Xuan Fang, Guannan Qu
Defect control during CVD-growth for high performance MoS2-based self-powered photodetector
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) materials have unique band structure as well as excellent electrical and optical properties, which exhibit great advantages in optoelectronic devices. Chemical vapor deposition (CVD), a method to realize the synthesis of large-scale 2D TMDs materials, will inevitably introduce defects in the growth process, thus decreasing the performance of 2D TMDs-based optoelectronic devices. In order to fundamentally address this issue, we proposed a method to gradually regulate the reaction concentration of precursor during growth. As a result, the suitable concentration of precursor can effectively enhance the probability of covalent binding of X−M (X: S, Se, etc.; M: Mo, W, etc.), thus suppressing the generation of vacancy defects. Furthermore, we explored sulfur vacancy (VS) on the performance of 2D molybdenum disulfide-based (MoS2-based) self-powered devices through constructing p-type silicon/MoS2 (p-Si/MoS2) based p–n heterojunction. The photodetector composed of optimized MoS2 nanosheets exhibited high responsivity (330.14 A·W−1), fast response speed (40 μs/133 μs), and excellent photovoltage stability. This method of regulating the low temperature region during CVD growth can realize the preparation of high-quality TMDs films and be applied in high-performance optoelectronic devices.
defect control / sulfur vacancy / chemical vapor deposition (CVD) / photodetector / transition-metal dichalcogenides (TMDs)
[1] |
R. Yang, J. Fan, and M. Sun, Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties, Front. Phys. 17(4), 43202 (2022)
CrossRef
ADS
Google scholar
|
[2] |
C. L. Tan, Z. C. Lai, and H. Zhang, Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials, Adv. Mater. 29(37), 1701392 (2017)
CrossRef
ADS
Google scholar
|
[3] |
Y. Luo, J. Zhao, A. Fieramosca, Q. Guo, H. Kang, X. Liu, T. C. H. Liew, D. Sanvitto, Z. An, S. Ghosh, Z. Wang, H. Xu, and Q. Xiong, Strong light-matter coupling in van der Waals materials, Light Sci. Appl. 13(1), 203 (2024)
CrossRef
ADS
Google scholar
|
[4] |
X. Fan, R. Xin, L. Li, B. Zhang, C. Li, X. Zhou, H. Chen, H. Zhang, F. OuYang, and Y. Zhou, Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions, Front. Phys. 19(2), 23401 (2024)
CrossRef
ADS
Google scholar
|
[5] |
Z. Wang, N. Ali, T. D. Ngo, H. Shin, S. Lee, and W. J. Yoo, Achieving ultrahigh electron mobility in PdSe2 field-effect transistors via semimetal antimony as contacts, Adv. Funct. Mater. 33(28), 2301651 (2023)
CrossRef
ADS
Google scholar
|
[6] |
Y. Chen, S. Yu, T. Jiang, X. Liu, X. Cheng, and D. Huang, Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides, Front. Phys. 19(2), 23301 (2024)
CrossRef
ADS
Google scholar
|
[7] |
A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S. P. Stepanoff, M. A. Steves, S. S. Radhakrishnan, S. Bachu, C. W. Ordonez, J. R. Shallenberger, J. M. Redwing, K. L. Knappenberger, D. E. Wolfe, and S. Das, Active pixel sensor matrix based on monolayer MoS2 phototransistor array, Nat. Mater. 21(12), 1379 (2022)
CrossRef
ADS
Google scholar
|
[8] |
K. Shi, J. Li, Y. Xiao, L. Guo, X. Chu, Y. Zhai, B. Zhang, D. Lu, and F. Rosei, High-response, ultrafast-speed, and self-powered photodetection achieved in InP@ZnS-MoS2 phototransistors with interdigitated Pt electrodes, ACS Appl. Mater. Interfaces 12(28), 31382 (2020)
CrossRef
ADS
Google scholar
|
[9] |
J. Shan, J. Li, X. Chu, M. Xu, F. Jin, X. Fang, Z. Wei, and X. Wang, Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures, Appl. Surf. Sci. 443, 31 (2018)
CrossRef
ADS
Google scholar
|
[10] |
S. Li, X. Liu, H. Yang, H. Zhu, and X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric, Nat. Electron. 7(3), 216 (2024)
CrossRef
ADS
Google scholar
|
[11] |
K. N. Nazif, F. U. Nitta, A. Daus, K. C. Saraswat, and E. Pop, Efficiency limit of transition metal dichalcogenide solar cells, Commun. Phys. 6(1), 367 (2023)
CrossRef
ADS
Google scholar
|
[12] |
T. Abhijith, R. Suthar, and S. Karak, Synergistic plasmonic responses of multi-shaped Au nanostructures hybridized with few-layer WS2 nanosheets for organic solar cells, ACS Appl. Nano Mater. 6(13), 11737 (2023)
CrossRef
ADS
Google scholar
|
[13] |
H. Yang, R. Luo, K. Shi, J. Li, M. Xu, X. Chu, Y. Zhai, G. Qu, and X. Fang, Pollution-free interface of 2D-MoS2/1D-CuO vdWs heterojunction for high-performance photodetector, Nanotechnology 35(10), 105202 (2024)
CrossRef
ADS
Google scholar
|
[14] |
J. Yan, K. Ye, Z. Jia, Z. Zhang, P. Li, L. Liu, C. Mu, H. Huang, Y. Cheng, A. Nie, J. Xiang, S. Wang, and Z. Liu, High-performance broadband image sensing photodetector based on MnTe/WS2 van der Waals epitaxial heterostructures, ACS Appl. Mater. Interfaces 16(15), 19112 (2024)
CrossRef
ADS
Google scholar
|
[15] |
J. You, Z. Jin, Y. Li, T. Kang, K. Zhang, W. Wang, M. Xu, Z. Gao, J. Wang, J. Kim, and Z. Luo, Epitaxial growth of 1D Te/2D MoSe2 mixed-dimensional heterostructures for high-efficient self-powered photodetector, Adv. Funct. Mater. 34(10), 2311134 (2024)
CrossRef
ADS
Google scholar
|
[16] |
Z. He, H. Guan, X. Liang, J. Chen, M. Xie, K. Luo, R. An, L. Ma, F. Ma, T. Yang, and H. Lu, Broadband, polarization-sensitive, and self-powered high-performance photodetection of hetero-integrated MoS2 on lithium niobate, Research 6, 0199 (2023)
CrossRef
ADS
Google scholar
|
[17] |
F. Lan, R. Yang, K. Sun, Z. Wang, Y. Zhang, Y. Wang, and H. Cheng, Growth of wafer scale continuous monolayer WS2 film with millimeter grain size, Vacuum 201, 111091 (2022)
CrossRef
ADS
Google scholar
|
[18] |
J. Li, S. Wang, L. Li, Z. Wei, Q. Wang, H. Sun, J. Tian, Y. Guo, J. Liu, H. Yu, N. Li, G. Long, X. Bai, W. Yang, R. Yang, D. Shi, and G. Zhang, Chemical vapor deposition of 4 inch wafer-scale monolayer MoSe2, Small Sci. 2(11), 2200062 (2022)
CrossRef
ADS
Google scholar
|
[19] |
H. Zeng, Y. Wen, L. Yin, R. Cheng, H. Wang, C. Liu, and J. He, Recent developments in CVD growth and applications of 2D transition metal dichalcogenides, Front. Phys. 18(5), 53603 (2023)
CrossRef
ADS
Google scholar
|
[20] |
R. Addou, L. Colombo, and R. M. Wallace, Surface defects on natural MoS2, ACS Appl. Mater. Interfaces 7(22), 11921 (2015)
CrossRef
ADS
Google scholar
|
[21] |
I. Lee, M. Kang, S. Park, C. Park, H. Lee, S. Bae, H. Lim, S. Kim, W. Hong, and S. Choi, Healing donor defect states in CVD-grown MoS2 field-effect transistors using oxygen plasma with a channel-protecting barrier, Small 20(2), 2305143 (2024)
CrossRef
ADS
Google scholar
|
[22] |
L. Gao, X. Zhang, H. Yu, M. Hong, X. Wei, Z. Chen, Q. Zhang, Q. Liao, Z. Zhang, and Y. Zhang, Deciphering vacancy defect evolution of 2D MoS2 for reliable transistors, ACS Appl. Mater. Interfaces 15(32), 38603 (2023)
CrossRef
ADS
Google scholar
|
[23] |
A. Schwarz, H. Alon-Yehezkel, A. Levi, R. K. Yadav, K. Majhi, Y. Tzuriel, L. Hoang, C. S. Bailey, T. Brumme, A. J. Mannix, H. Cohen, E. Yalon, T. Heine, E. Pop, O. Cheshnovsky, and D. Naveh, Thiol-based defect healing of WSe2 and WS2, npj 2D Mater. Appl. 7, 59 (2023)
CrossRef
ADS
Google scholar
|
[24] |
T. Grünleitner, A. Henning, M. Bissolo, M. Zengerle, L. Gregoratti, M. Amati, P. Zeller, J. Eichhorn, A. V. Stier, A. W. Holleitner, J. J. Finley, and I. D. Sharp, Real-time investigation of sulfur vacancy generation and passivation in monolayer molybdenum disulfide via in situ X-ray photoelectron spectromicroscopy, ACS Nano 16(12), 20364 (2022)
CrossRef
ADS
Google scholar
|
[25] |
S. Zheng, D. Yin, S. Zhang, Y. Wang, J. Li, Z. Wang, Y. Yuan, H. S. Tsai, and J. Hao, Tailoring selenium vacancies in MoSe2 through oxygen passivation for room-temperature NO2 sensing enhancement, J. Mater. Chem. A 11(35), 18755 (2023)
CrossRef
ADS
Google scholar
|
[26] |
J. Li, J. Bai, M. Meng, C. Hu, H. Yuan, Y. Zhang, and L. Sun, Improved temporal response of MoS2 photodetectors by mild oxygen plasma treatment, Nanomaterials (Basel) 12(8), 1365 (2022)
CrossRef
ADS
Google scholar
|
[27] |
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 13(6), 2615 (2013)
CrossRef
ADS
Google scholar
|
[28] |
R. Tomar, B. Hsu, A. Perez, M. Stroscio, and M. Dutta, Probing sulfur vacancies in CVD-grown monolayer MoS2 on SiO2/Si in the temperature range 750–900 °C, J. Electron. Mater. 52(8), 5513 (2023)
CrossRef
ADS
Google scholar
|
[29] |
I.H. AbidiS. P. GiridharJ.O. TollerudJ.LimbA.Mazumder E.L. H. MayesB.J. MurdochC.Xu A.BhoriyaA. RanjanT.AhmedY.LiJ.A. Davis C.L. BentleyS.P. RussoE.D. GasperaS.Walia, Intrinsic defect engineering of CVD grown monolayer MoS2 for tuneable functional nanodevices, arXiv: 2311.07984 (2023)
|
[30] |
L. P. L. Mawlong, A. T. Hoang, J. Chintalapalli, S. Ji, K. Lee, K. Kim, and J. H. Ahn, Reduced defect density in MOCVD-grown MoS2 by manipulating the precursor phase, ACS Appl. Mater. Interfaces 15(40), 47359 (2023)
CrossRef
ADS
Google scholar
|
[31] |
S. Feng, J. Tan, S. Zhao, S. Zhang, U. Khan, L. Tang, X. Zou, J. Lin, H. M. Cheng, and B. Liu, Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules, Small 16(35), 2003357 (2020)
CrossRef
ADS
Google scholar
|
[32] |
S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition, Chem. Mater. 26(22), 6371 (2014)
CrossRef
ADS
Google scholar
|
[33] |
G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, C. Schüller, and T. Korn, Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes, Appl. Phys. Lett. 101(10), 101906 (2012)
CrossRef
ADS
Google scholar
|
[34] |
F. Chen and W. Su, The effect of the experimental parameters on the growth of MoS2 flakes, CrystEngComm 20(33), 4823 (2018)
CrossRef
ADS
Google scholar
|
[35] |
H. Bretscher, Z. Li, J. Xiao, D. Y. Qiu, S. Refaely-Abramson, J. A. Alexander-Webber, A. Tanoh, Y. Fan, G. Delport, C. A. Williams, S. D. Stranks, S. Hofmann, J. B. Neaton, S. G. Louie, and A. Rao, Rational passivation of sulfur vacancy defects in two-dimensional transition metal dichalcogenides, ACS Nano 15(5), 8780 (2021)
CrossRef
ADS
Google scholar
|
[36] |
X. Zhang, S. Wang, C. K. Lee, C. M. Cheng, J. C. Lan, X. Li, J. Qiao, and X. Tao, Unravelling the effect of sulfur vacancies on the electronic structure of the MoS2 crystal, Phys. Chem. Chem. Phys. 22(38), 21776 (2020)
CrossRef
ADS
Google scholar
|
[37] |
W. Song, J. Chen, Z. Li, and X. Fang, Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs, Adv. Mater. 33(27), 2101059 (2021)
CrossRef
ADS
Google scholar
|
[38] |
Z. Liu, D. Zhao, T. Min, J. Wang, G. Chen, and H. X. Wang, Photovoltaic three-dimensional diamond UV photodetector with low dark current and fast response speed fabricated by bottom–up method, IEEE Electron Device Lett. 40(7), 1186 (2019)
CrossRef
ADS
Google scholar
|
[39] |
B. Chakraborty, A. Bera, D. V. S. Muthu, S. Bhowmick, U. V. Waghmare, and A. K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor, Phys. Rev. B 85(16), 161403 (2012)
CrossRef
ADS
Google scholar
|
[40] |
A. Abnavi, R. Ahmadi, A. Hasani, M. Fawzy, M. R. Mohammadzadeh, T. De Silva, N. Yu, and M. M. Adachi, Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications, ACS Appl. Mater. Interfaces 13(38), 45843 (2021)
CrossRef
ADS
Google scholar
|
[41] |
A. S. Pawbake, S. R. Jadkar, and D. J. Late, High performance humidity sensor and photodetector based on SnSe nanorods, Mater. Res. Express 3(10), 105038 (2016)
CrossRef
ADS
Google scholar
|
[42] |
Q. Li, S. Zheng, J. Pu, W. Wang, L. Li, and L. Wang, Revealing the failure mechanism and designing protection approach for MoS2 in humid environment by first-principles investigation, Appl. Surf. Sci. 487, 1121 (2019)
CrossRef
ADS
Google scholar
|
[43] |
Y.WangZ. HeJ.ZhangH.LiuX.Lai B.LiuY. ChenF.WangL.Zhang, UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface, Nano Res. 13(2), 358 (2020)
|
[44] |
S. Yu, P. Li, H. Ding, and X. Ma, Construction of high-performance g-C3N4/MoS2 heterojunction humidity sensor and investigation of its application, Sens. Actuators B Chem. 419, 136392 (2024)
CrossRef
ADS
Google scholar
|
[45] |
B. Zhang, Z. Ao, X. Lan, J. Zhong, F. Zhang, S. Zhang, R. Yang, L. Wang, P. Chen, G. Wang, X. Yang, H. Liu, J. Cao, M. Zhong, H. Li, and Z. Zhang, Self-rolled-up WSe2 one-dimensional/two-dimensional homojunctions: Enabling high-performance self-powered polarization-sensitive photodetectors, Nano Lett. 24(25), 7716 (2024)
CrossRef
ADS
Google scholar
|
[46] |
J. You, Z. Jin, Y. Li, T. Kang, K. Zhang, W. Wang, M. Xu, Z. Gao, J. Wang, J. K. Kim, and Z. Luo, Epitaxial growth of 1D Te/2D MoSe2 mixed-dimensional heterostructures for high-efficient self-powered photodetector, Adv. Funct. Mater. 34(10), 2311134 (2024)
CrossRef
ADS
Google scholar
|
[47] |
A. Saravanan, B. R. Huang, D. Kathiravan, S. Sakalley, and S. C. Chen, Tunable defect-engineered nanohybrid heterostructures: Exfoliated 2D WSe2–MoS2 nanohybrid sheet covered on 1D ZnO nanostructures for self-powered UV photodetectors, J. Mater. Chem. C 11(18), 6082 (2023)
CrossRef
ADS
Google scholar
|
[48] |
M.HussainS. H. A. JafferyA.AliC.D. NguyenS.Aftab M.RiazS. AbbasS.HussainY.SeoJ.Jung, NIR self-powered photodetection and gate tunable rectification behavior in 2D GeSe/MoSe2 heterojunction diode, Sci. Rep. 11(1), 3688 (2021)
|
[49] |
H. Li and Z. Yang, Highly responsive and self-powered photodetector based on PtSe2/MoS2 heterostructure, Molecules 29(11), 2553 (2024)
CrossRef
ADS
Google scholar
|
[50] |
J.J. LeeD. H. ShinD.H. JungS.D. OhH.Lee, A high-performance broadband self-powered photodetector employing an MoS2/LaVO3 heterojunction structure, J. Alloys Compd. 937, 168404 (2023)
|
[51] |
P. Augustine, K. L. Kumawat, D. K. Singh, S. B. Krupanidhi, and K. K. Nanda, MoS2/SnO2 heterojunction-based self-powered photodetector, Appl. Phys. Lett. 120(18), 181106 (2022)
CrossRef
ADS
Google scholar
|
[52] |
C. Hong, S. G. Jang, Y. J. Yu, and J. H. Kim, Hot electron dynamics in MoS2/Pt van der Waals electrode interface for self-powered hot electron photodetection, Adv. Mater. Interfaces 10(13), 2300140 (2023)
CrossRef
ADS
Google scholar
|
[53] |
P.VashishthaI.H. AbidiS.P. GiridharA.K. VermaP.PrajapatA.Bhoriya B.J. MurdochJ.O. TollerudC.Xu J.A. DavisG. GuptaS.Walia, CVD-grown monolayer MoS2 and GaN thin film heterostructure for a self-powered and bidirectional photodetector with an extended active spectrum, ACS Appl. Mater. Interfaces 16(24), 31294 (2024)
|
[54] |
J. Hui, Two-dimensional Bi2S3/MoS2 van der Waals heterostructure for self-powered photodetectors, Appl. Phys. Express 16(1), 015507 (2023)
CrossRef
ADS
Google scholar
|
[55] |
P. Vashishtha, A. Dash, P. Prajapat, P. Goswami, S. Walia, and G. Gupta, Self-powered broadband photodetection of MoS2/Sb2Se3 heterostructure, ACS Appl. Opt. Mater. 1(12), 1952 (2023)
CrossRef
ADS
Google scholar
|
[56] |
A. Abnavi, R. Ahmadi, H. Ghanbari, M. Fawzy, A. Hasani, T. De Silva, A. M. Askar, M. R. Mohammadzadeh, F. Kabir, M. Whitwick, M. Beaudoin, S. K. O’Leary, and M. M. Adachi, Flexible high-performance photovoltaic devices based on 2D MoS2 diodes with geometrically asymmetric contact areas, Adv. Funct. Mater. 33(7), 2210619 (2023)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |