Defect control during CVD-growth for high performance MoS2-based self-powered photodetector

Xinyue Pan, Zhe Xu, Jinhua Li, Kaixi Shi, Mingze Xu, Xuan Fang, Guannan Qu

PDF(4569 KB)
PDF(4569 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 024206. DOI: 10.15302/frontphys.2025.024206
RESEARCH ARTICLE

Defect control during CVD-growth for high performance MoS2-based self-powered photodetector

Author information +
History +

Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) materials have unique band structure as well as excellent electrical and optical properties, which exhibit great advantages in optoelectronic devices. Chemical vapor deposition (CVD), a method to realize the synthesis of large-scale 2D TMDs materials, will inevitably introduce defects in the growth process, thus decreasing the performance of 2D TMDs-based optoelectronic devices. In order to fundamentally address this issue, we proposed a method to gradually regulate the reaction concentration of precursor during growth. As a result, the suitable concentration of precursor can effectively enhance the probability of covalent binding of X−M (X: S, Se, etc.; M: Mo, W, etc.), thus suppressing the generation of vacancy defects. Furthermore, we explored sulfur vacancy (VS) on the performance of 2D molybdenum disulfide-based (MoS2-based) self-powered devices through constructing p-type silicon/MoS2 (p-Si/MoS2) based p–n heterojunction. The photodetector composed of optimized MoS2 nanosheets exhibited high responsivity (330.14 A·W−1), fast response speed (40 μs/133 μs), and excellent photovoltage stability. This method of regulating the low temperature region during CVD growth can realize the preparation of high-quality TMDs films and be applied in high-performance optoelectronic devices.

Graphical abstract

Keywords

defect control / sulfur vacancy / chemical vapor deposition (CVD) / photodetector / transition-metal dichalcogenides (TMDs)

Cite this article

Download citation ▾
Xinyue Pan, Zhe Xu, Jinhua Li, Kaixi Shi, Mingze Xu, Xuan Fang, Guannan Qu. Defect control during CVD-growth for high performance MoS2-based self-powered photodetector. Front. Phys., 2025, 20(2): 024206 https://doi.org/10.15302/frontphys.2025.024206

References

[1]
R. Yang, J. Fan, and M. Sun, Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties, Front. Phys. 17(4), 43202 (2022)
CrossRef ADS Google scholar
[2]
C. L. Tan, Z. C. Lai, and H. Zhang, Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials, Adv. Mater. 29(37), 1701392 (2017)
CrossRef ADS Google scholar
[3]
Y. Luo, J. Zhao, A. Fieramosca, Q. Guo, H. Kang, X. Liu, T. C. H. Liew, D. Sanvitto, Z. An, S. Ghosh, Z. Wang, H. Xu, and Q. Xiong, Strong light-matter coupling in van der Waals materials, Light Sci. Appl. 13(1), 203 (2024)
CrossRef ADS Google scholar
[4]
X. Fan, R. Xin, L. Li, B. Zhang, C. Li, X. Zhou, H. Chen, H. Zhang, F. OuYang, and Y. Zhou, Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions, Front. Phys. 19(2), 23401 (2024)
CrossRef ADS Google scholar
[5]
Z. Wang, N. Ali, T. D. Ngo, H. Shin, S. Lee, and W. J. Yoo, Achieving ultrahigh electron mobility in PdSe2 field-effect transistors via semimetal antimony as contacts, Adv. Funct. Mater. 33(28), 2301651 (2023)
CrossRef ADS Google scholar
[6]
Y. Chen, S. Yu, T. Jiang, X. Liu, X. Cheng, and D. Huang, Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides, Front. Phys. 19(2), 23301 (2024)
CrossRef ADS Google scholar
[7]
A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S. P. Stepanoff, M. A. Steves, S. S. Radhakrishnan, S. Bachu, C. W. Ordonez, J. R. Shallenberger, J. M. Redwing, K. L. Knappenberger, D. E. Wolfe, and S. Das, Active pixel sensor matrix based on monolayer MoS2 phototransistor array, Nat. Mater. 21(12), 1379 (2022)
CrossRef ADS Google scholar
[8]
K. Shi, J. Li, Y. Xiao, L. Guo, X. Chu, Y. Zhai, B. Zhang, D. Lu, and F. Rosei, High-response, ultrafast-speed, and self-powered photodetection achieved in InP@ZnS-MoS2 phototransistors with interdigitated Pt electrodes, ACS Appl. Mater. Interfaces 12(28), 31382 (2020)
CrossRef ADS Google scholar
[9]
J. Shan, J. Li, X. Chu, M. Xu, F. Jin, X. Fang, Z. Wei, and X. Wang, Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures, Appl. Surf. Sci. 443, 31 (2018)
CrossRef ADS Google scholar
[10]
S. Li, X. Liu, H. Yang, H. Zhu, and X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric, Nat. Electron. 7(3), 216 (2024)
CrossRef ADS Google scholar
[11]
K. N. Nazif, F. U. Nitta, A. Daus, K. C. Saraswat, and E. Pop, Efficiency limit of transition metal dichalcogenide solar cells, Commun. Phys. 6(1), 367 (2023)
CrossRef ADS Google scholar
[12]
T. Abhijith, R. Suthar, and S. Karak, Synergistic plasmonic responses of multi-shaped Au nanostructures hybridized with few-layer WS2 nanosheets for organic solar cells, ACS Appl. Nano Mater. 6(13), 11737 (2023)
CrossRef ADS Google scholar
[13]
H. Yang, R. Luo, K. Shi, J. Li, M. Xu, X. Chu, Y. Zhai, G. Qu, and X. Fang, Pollution-free interface of 2D-MoS2/1D-CuO vdWs heterojunction for high-performance photodetector, Nanotechnology 35(10), 105202 (2024)
CrossRef ADS Google scholar
[14]
J. Yan, K. Ye, Z. Jia, Z. Zhang, P. Li, L. Liu, C. Mu, H. Huang, Y. Cheng, A. Nie, J. Xiang, S. Wang, and Z. Liu, High-performance broadband image sensing photodetector based on MnTe/WS2 van der Waals epitaxial heterostructures, ACS Appl. Mater. Interfaces 16(15), 19112 (2024)
CrossRef ADS Google scholar
[15]
J. You, Z. Jin, Y. Li, T. Kang, K. Zhang, W. Wang, M. Xu, Z. Gao, J. Wang, J. Kim, and Z. Luo, Epitaxial growth of 1D Te/2D MoSe2 mixed-dimensional heterostructures for high-efficient self-powered photodetector, Adv. Funct. Mater. 34(10), 2311134 (2024)
CrossRef ADS Google scholar
[16]
Z. He, H. Guan, X. Liang, J. Chen, M. Xie, K. Luo, R. An, L. Ma, F. Ma, T. Yang, and H. Lu, Broadband, polarization-sensitive, and self-powered high-performance photodetection of hetero-integrated MoS2 on lithium niobate, Research 6, 0199 (2023)
CrossRef ADS Google scholar
[17]
F. Lan, R. Yang, K. Sun, Z. Wang, Y. Zhang, Y. Wang, and H. Cheng, Growth of wafer scale continuous monolayer WS2 film with millimeter grain size, Vacuum 201, 111091 (2022)
CrossRef ADS Google scholar
[18]
J. Li, S. Wang, L. Li, Z. Wei, Q. Wang, H. Sun, J. Tian, Y. Guo, J. Liu, H. Yu, N. Li, G. Long, X. Bai, W. Yang, R. Yang, D. Shi, and G. Zhang, Chemical vapor deposition of 4 inch wafer-scale monolayer MoSe2, Small Sci. 2(11), 2200062 (2022)
CrossRef ADS Google scholar
[19]
H. Zeng, Y. Wen, L. Yin, R. Cheng, H. Wang, C. Liu, and J. He, Recent developments in CVD growth and applications of 2D transition metal dichalcogenides, Front. Phys. 18(5), 53603 (2023)
CrossRef ADS Google scholar
[20]
R. Addou, L. Colombo, and R. M. Wallace, Surface defects on natural MoS2, ACS Appl. Mater. Interfaces 7(22), 11921 (2015)
CrossRef ADS Google scholar
[21]
I. Lee, M. Kang, S. Park, C. Park, H. Lee, S. Bae, H. Lim, S. Kim, W. Hong, and S. Choi, Healing donor defect states in CVD-grown MoS2 field-effect transistors using oxygen plasma with a channel-protecting barrier, Small 20(2), 2305143 (2024)
CrossRef ADS Google scholar
[22]
L. Gao, X. Zhang, H. Yu, M. Hong, X. Wei, Z. Chen, Q. Zhang, Q. Liao, Z. Zhang, and Y. Zhang, Deciphering vacancy defect evolution of 2D MoS2 for reliable transistors, ACS Appl. Mater. Interfaces 15(32), 38603 (2023)
CrossRef ADS Google scholar
[23]
A. Schwarz, H. Alon-Yehezkel, A. Levi, R. K. Yadav, K. Majhi, Y. Tzuriel, L. Hoang, C. S. Bailey, T. Brumme, A. J. Mannix, H. Cohen, E. Yalon, T. Heine, E. Pop, O. Cheshnovsky, and D. Naveh, Thiol-based defect healing of WSe2 and WS2, npj 2D Mater. Appl. 7, 59 (2023)
CrossRef ADS Google scholar
[24]
T. Grünleitner, A. Henning, M. Bissolo, M. Zengerle, L. Gregoratti, M. Amati, P. Zeller, J. Eichhorn, A. V. Stier, A. W. Holleitner, J. J. Finley, and I. D. Sharp, Real-time investigation of sulfur vacancy generation and passivation in monolayer molybdenum disulfide via in situ X-ray photoelectron spectromicroscopy, ACS Nano 16(12), 20364 (2022)
CrossRef ADS Google scholar
[25]
S. Zheng, D. Yin, S. Zhang, Y. Wang, J. Li, Z. Wang, Y. Yuan, H. S. Tsai, and J. Hao, Tailoring selenium vacancies in MoSe2 through oxygen passivation for room-temperature NO2 sensing enhancement, J. Mater. Chem. A 11(35), 18755 (2023)
CrossRef ADS Google scholar
[26]
J. Li, J. Bai, M. Meng, C. Hu, H. Yuan, Y. Zhang, and L. Sun, Improved temporal response of MoS2 photodetectors by mild oxygen plasma treatment, Nanomaterials (Basel) 12(8), 1365 (2022)
CrossRef ADS Google scholar
[27]
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 13(6), 2615 (2013)
CrossRef ADS Google scholar
[28]
R. Tomar, B. Hsu, A. Perez, M. Stroscio, and M. Dutta, Probing sulfur vacancies in CVD-grown monolayer MoS2 on SiO2/Si in the temperature range 750–900 °C, J. Electron. Mater. 52(8), 5513 (2023)
CrossRef ADS Google scholar
[29]
I.H. AbidiS. P. GiridharJ.O. TollerudJ.LimbA.Mazumder E.L. H. MayesB.J. MurdochC.Xu A.BhoriyaA. RanjanT.AhmedY.LiJ.A. Davis C.L. BentleyS.P. RussoE.D. GasperaS.Walia, Intrinsic defect engineering of CVD grown monolayer MoS2 for tuneable functional nanodevices, arXiv: 2311.07984 (2023)
[30]
L. P. L. Mawlong, A. T. Hoang, J. Chintalapalli, S. Ji, K. Lee, K. Kim, and J. H. Ahn, Reduced defect density in MOCVD-grown MoS2 by manipulating the precursor phase, ACS Appl. Mater. Interfaces 15(40), 47359 (2023)
CrossRef ADS Google scholar
[31]
S. Feng, J. Tan, S. Zhao, S. Zhang, U. Khan, L. Tang, X. Zou, J. Lin, H. M. Cheng, and B. Liu, Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules, Small 16(35), 2003357 (2020)
CrossRef ADS Google scholar
[32]
S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition, Chem. Mater. 26(22), 6371 (2014)
CrossRef ADS Google scholar
[33]
G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, C. Schüller, and T. Korn, Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes, Appl. Phys. Lett. 101(10), 101906 (2012)
CrossRef ADS Google scholar
[34]
F. Chen and W. Su, The effect of the experimental parameters on the growth of MoS2 flakes, CrystEngComm 20(33), 4823 (2018)
CrossRef ADS Google scholar
[35]
H. Bretscher, Z. Li, J. Xiao, D. Y. Qiu, S. Refaely-Abramson, J. A. Alexander-Webber, A. Tanoh, Y. Fan, G. Delport, C. A. Williams, S. D. Stranks, S. Hofmann, J. B. Neaton, S. G. Louie, and A. Rao, Rational passivation of sulfur vacancy defects in two-dimensional transition metal dichalcogenides, ACS Nano 15(5), 8780 (2021)
CrossRef ADS Google scholar
[36]
X. Zhang, S. Wang, C. K. Lee, C. M. Cheng, J. C. Lan, X. Li, J. Qiao, and X. Tao, Unravelling the effect of sulfur vacancies on the electronic structure of the MoS2 crystal, Phys. Chem. Chem. Phys. 22(38), 21776 (2020)
CrossRef ADS Google scholar
[37]
W. Song, J. Chen, Z. Li, and X. Fang, Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs, Adv. Mater. 33(27), 2101059 (2021)
CrossRef ADS Google scholar
[38]
Z. Liu, D. Zhao, T. Min, J. Wang, G. Chen, and H. X. Wang, Photovoltaic three-dimensional diamond UV photodetector with low dark current and fast response speed fabricated by bottom–up method, IEEE Electron Device Lett. 40(7), 1186 (2019)
CrossRef ADS Google scholar
[39]
B. Chakraborty, A. Bera, D. V. S. Muthu, S. Bhowmick, U. V. Waghmare, and A. K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor, Phys. Rev. B 85(16), 161403 (2012)
CrossRef ADS Google scholar
[40]
A. Abnavi, R. Ahmadi, A. Hasani, M. Fawzy, M. R. Mohammadzadeh, T. De Silva, N. Yu, and M. M. Adachi, Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications, ACS Appl. Mater. Interfaces 13(38), 45843 (2021)
CrossRef ADS Google scholar
[41]
A. S. Pawbake, S. R. Jadkar, and D. J. Late, High performance humidity sensor and photodetector based on SnSe nanorods, Mater. Res. Express 3(10), 105038 (2016)
CrossRef ADS Google scholar
[42]
Q. Li, S. Zheng, J. Pu, W. Wang, L. Li, and L. Wang, Revealing the failure mechanism and designing protection approach for MoS2 in humid environment by first-principles investigation, Appl. Surf. Sci. 487, 1121 (2019)
CrossRef ADS Google scholar
[43]
Y.WangZ. HeJ.ZhangH.LiuX.Lai B.LiuY. ChenF.WangL.Zhang, UV illumination enhanced desorption of oxygen molecules from monolayer MoS2 surface, Nano Res. 13(2), 358 (2020)
[44]
S. Yu, P. Li, H. Ding, and X. Ma, Construction of high-performance g-C3N4/MoS2 heterojunction humidity sensor and investigation of its application, Sens. Actuators B Chem. 419, 136392 (2024)
CrossRef ADS Google scholar
[45]
B. Zhang, Z. Ao, X. Lan, J. Zhong, F. Zhang, S. Zhang, R. Yang, L. Wang, P. Chen, G. Wang, X. Yang, H. Liu, J. Cao, M. Zhong, H. Li, and Z. Zhang, Self-rolled-up WSe2 one-dimensional/two-dimensional homojunctions: Enabling high-performance self-powered polarization-sensitive photodetectors, Nano Lett. 24(25), 7716 (2024)
CrossRef ADS Google scholar
[46]
J. You, Z. Jin, Y. Li, T. Kang, K. Zhang, W. Wang, M. Xu, Z. Gao, J. Wang, J. K. Kim, and Z. Luo, Epitaxial growth of 1D Te/2D MoSe2 mixed-dimensional heterostructures for high-efficient self-powered photodetector, Adv. Funct. Mater. 34(10), 2311134 (2024)
CrossRef ADS Google scholar
[47]
A. Saravanan, B. R. Huang, D. Kathiravan, S. Sakalley, and S. C. Chen, Tunable defect-engineered nanohybrid heterostructures: Exfoliated 2D WSe2–MoS2 nanohybrid sheet covered on 1D ZnO nanostructures for self-powered UV photodetectors, J. Mater. Chem. C 11(18), 6082 (2023)
CrossRef ADS Google scholar
[48]
M.HussainS. H. A. JafferyA.AliC.D. NguyenS.Aftab M.RiazS. AbbasS.HussainY.SeoJ.Jung, NIR self-powered photodetection and gate tunable rectification behavior in 2D GeSe/MoSe2 heterojunction diode, Sci. Rep. 11(1), 3688 (2021)
[49]
H. Li and Z. Yang, Highly responsive and self-powered photodetector based on PtSe2/MoS2 heterostructure, Molecules 29(11), 2553 (2024)
CrossRef ADS Google scholar
[50]
J.J. LeeD. H. ShinD.H. JungS.D. OhH.Lee, A high-performance broadband self-powered photodetector employing an MoS2/LaVO3 heterojunction structure, J. Alloys Compd. 937, 168404 (2023)
[51]
P. Augustine, K. L. Kumawat, D. K. Singh, S. B. Krupanidhi, and K. K. Nanda, MoS2/SnO2 heterojunction-based self-powered photodetector, Appl. Phys. Lett. 120(18), 181106 (2022)
CrossRef ADS Google scholar
[52]
C. Hong, S. G. Jang, Y. J. Yu, and J. H. Kim, Hot electron dynamics in MoS2/Pt van der Waals electrode interface for self-powered hot electron photodetection, Adv. Mater. Interfaces 10(13), 2300140 (2023)
CrossRef ADS Google scholar
[53]
P.VashishthaI.H. AbidiS.P. GiridharA.K. VermaP.PrajapatA.Bhoriya B.J. MurdochJ.O. TollerudC.Xu J.A. DavisG. GuptaS.Walia, CVD-grown monolayer MoS2 and GaN thin film heterostructure for a self-powered and bidirectional photodetector with an extended active spectrum, ACS Appl. Mater. Interfaces 16(24), 31294 (2024)
[54]
J. Hui, Two-dimensional Bi2S3/MoS2 van der Waals heterostructure for self-powered photodetectors, Appl. Phys. Express 16(1), 015507 (2023)
CrossRef ADS Google scholar
[55]
P. Vashishtha, A. Dash, P. Prajapat, P. Goswami, S. Walia, and G. Gupta, Self-powered broadband photodetection of MoS2/Sb2Se3 heterostructure, ACS Appl. Opt. Mater. 1(12), 1952 (2023)
CrossRef ADS Google scholar
[56]
A. Abnavi, R. Ahmadi, H. Ghanbari, M. Fawzy, A. Hasani, T. De Silva, A. M. Askar, M. R. Mohammadzadeh, F. Kabir, M. Whitwick, M. Beaudoin, S. K. O’Leary, and M. M. Adachi, Flexible high-performance photovoltaic devices based on 2D MoS2 diodes with geometrically asymmetric contact areas, Adv. Funct. Mater. 33(7), 2210619 (2023)
CrossRef ADS Google scholar

Declarations

The authors declare no competing financial interest.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.024206.

Acknowledgements

The authors immensely acknowledge the support of this work by the National Natural Science Foundation of China (No. 62174015) and Department of Science and Technology of Jilin Province (No. YDZJ202402081CXJD).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4569 KB)

Accesses

Citations

Detail

Sections
Recommended

/