Anyonic topological flat bands
Xiaoqi Zhou, Weixuan Zhang, Xiangdong Zhang
Anyonic topological flat bands
Topological flat bands have attracted significant interest across various branches of physics, where synthetic gauge fields are typically considered an essential prerequisite. Numerous mechanisms have been proposed for implementing these fields, including magnetic fields on electrons, differential optical paths for photons, and strain-induced effective magnetic fields, among others. In this work, we introduce a novel approach to generating synthetic gauge fields through quantum statistics and demonstrate their effectiveness in realizing anyonic topological flat bands. Notably, we discover that a pair of strongly interacting anyons can induce square-root topological flat bands within a lattice model that remains dispersive and topologically trivial for a single particle. To validate our theoretical predictions, we experimentally simulate the quantum statistics-induced topological flat bands and square-root topological boundary states by mapping the eigenstates of two anyons onto modes in electric circuits. Our findings not only open a new pathway for creating topological flat bands but also deepen our understanding of anyonic physics and the underlying principles of flat-band topology.
topological flat bands / anyons / quantum statistics / topolectrical circuits
[1] |
D. Leykam, A. Andreanov, and S. Flach, Artificial flat band systems: From lattice models to experiments, Adv. Phys. X 3(1), 1473052 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[2] |
S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Öhberg, E. Andersson, and R. R. Thomson, Observation of a localized flat-band state in a photonic Lieb lattice, Phys. Rev. Lett. 114(24), 245504 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[3] |
R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina, Observation of localized states in Lieb photonic lattices, Phys. Rev. Lett. 114(24), 245503 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[4] |
M. R. Slot, T. S. Gardenier, P. H. Jacobse, G. C. P. van Miert, S. N. Kempkes, S. J. M. Zevenhuizen, C. M. Smith, D. Vanmaekelbergh, and I. Swart, Experimental realization and characterization of an electronic Lieb lattice, Nat. Phys. 13(7), 672 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[5] |
P. Wang, Y. Zheng, X. Chen, C. Huang, Y. V. Kartashov, L. Torner, V. V. Konotop, and F. Ye, Localization and delocalization of light in photonic moiré lattices, Nature 577(7788), 42 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[6] |
L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Superconductivity and strong correlations in moiré flat bands, Nat. Phys. 16(7), 725 (2020)
CrossRef
ADS
Google scholar
|
[7] |
Y. Choi, H. Kim, C. Lewandowski, Y. Peng, A. Thomson, R. Polski, Y. Zhang, K. Watanabe, T. Taniguchi, J. Alicea, and S. Nadj-Perge, Interaction-driven band flattening and correlated phases in twisted bilayer graphene, Nat. Phys. 17(12), 1375 (2021)
CrossRef
ADS
Google scholar
|
[8] |
D. Călugăru, A. Chew, L. Elcoro, Y. Xu, N. Regnault, Z. D. Song, and B. A. Bernevig, General construction and topological classification of crystalline flat bands, Nat. Phys. 18(2), 185 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef
ADS
Google scholar
|
[10] |
Y. Aharonov and D. Bohm, Significance of electromagnetic potential in the quantum theory, Phys. Rev. 115(3), 485 (1959)
CrossRef
ADS
Google scholar
|
[11] |
H. Aoki, M. Ando, and H. Matsumura, Hofstadter butterflies for flat bands, Phys. Rev. B 54(24), R17296 (1996)
CrossRef
ADS
Google scholar
|
[12] |
J. Vidal, R. Mosseri, and B. Douçot, Aharonov−Bohm cages in two-dimensional structures, Phys. Rev. Lett. 81(26), 5888 (1998)
CrossRef
ADS
Google scholar
|
[13] |
M. Creutz, End states, ladder compounds, and domain-wall fermions, Phys. Rev. Lett. 83(13), 2636 (1999)
CrossRef
ADS
Google scholar
|
[14] |
C. C. Abilio, P. Butaud, T. Fournier, B. Pannetier, J. Vidal, S. Tedesco, and B. Dalzotto, Magnetic field induced localization in a two-dimensional superconducting wire network, Phys. Rev. Lett. 83(24), 5102 (1999)
CrossRef
ADS
Google scholar
|
[15] |
S. Longhi, Aharonov–Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields, Opt. Lett. 39(20), 5892 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[16] |
S. Mukherjee, M. Di Liberto, P. Öhberg, R. R. Thomson, and N. Goldman, Experimental observation of Aharonov−Bohm cages in photonic lattices, Phys. Rev. Lett. 121(7), 075502 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[17] |
H. Wang, W. Zhang, H. Sun, and X. Zhang, Observation of inverse Anderson transitions in Aharonov−Bohm topolectrical circuits, Phys. Rev. B 106(10), 104203 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[18] |
C. Jörg, G. Queraltó, M. Kremer, G. Pelegrí, J. Schulz, A. Szameit, G. von Freymann, J. Mompart, and V. Ahufinger, Artificial gauge field switching using orbital angular momentum modes in optical waveguides, Light Sci. Appl. 9(1), 150 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[19] |
S. Li, Z. Y. Xue, M. Gong, and Y. Hu, Non-Abelian Aharonov−Bohm caging in photonic lattices, Phys. Rev. A 102(2), 023524 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
H. Li, Z. Dong, S. Longhi, Q. Liang, D. Xie, and B. Yan, Aharonov−Bohm Caging and inverse Anderson transition in ultracold atoms, Phys. Rev. Lett. 129(22), 220403 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
M.KremerI. PetridesE.MeyerM.HeinrichO.ZilberbergA.Szameit, A square-root topological insulator with non-quantized indices realized with photonic Aharonov−Bohm cages, Nat. Commun. 11(1), 907 (2020)
|
[22] |
J. Vidal, B. Douçot, R. Mosseri, and P. Butaud, Interaction-induced delocalization for two particles in a periodic potential, Phys. Rev. Lett. 85(18), 3906 (2000)
CrossRef
ADS
Google scholar
|
[23] |
C. E. Creffield and G. Platero, Coherent control of interacting particles using dynamical and Aharonov-Bohm Phases, Phys. Rev. Lett. 105(8), 086804 (2010)
CrossRef
ADS
arXiv
Google scholar
|
[24] |
J. G. Martinez, C. S. Chiu, B. M. Smitham, and A. A. Houck, Flat-band localization and interaction-induced delocalization of photons, Sci. Adv. 9(50), eadj7195 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[25] |
G. Möller and N. R. Cooper, Correlated phases of bosons in the flat lowest band of the dice lattice, Phys. Rev. Lett. 108(4), 045306 (2012)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
C. Cartwright, G. De Chiara, and M. Rizzi, Rhombi-chain Bose−Hubbard model: Geometric frustration and interactions, Phys. Rev. B 98(18), 184508 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
G. Pelegrí, A. M. Marques, V. Ahufinger, J. Mompart, and R. G. Dias, Interaction-induced topological properties of two bosons in flat-band systems, Phys. Rev. Res. 2(3), 033267 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[28] |
Y. Kuno, T. Mizoguchi, and Y. Hatsugai, Interaction-induced doublons and embedded topological subspace in a complete flat-band system, Phys. Rev. A 102(6), 063325 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[29] |
M. Di Liberto, S. Mukherjee, and N. Goldman, Nonlinear dynamics of Aharonov−Bohm cages, Phys. Rev. A 100(4), 043829 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
J. Zurita, C. E. Creffield, and G. Platero, Topology and interactions in the photonic Creutz and Creutz−Hubbard ladders, Adv. Quantum Technol. 3(2), 1900105 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
C. Danieli, A. Andreanov, T. Mithun, and S. Flach, Quantum caging in interacting many-body all-bands-flat lattices, Phys. Rev. B 104(8), 085132 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[32] |
E. Nicolau, A. M. Marques, R. G. Dias, J. Mompart, and V. Ahufinger, Many-body Aharonov−Bohm caging in a lattice of rings, Phys. Rev. A 107(2), 023305 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[33] |
J. M. Leinaas and J. Myrheim, On the theory of identical particles, Nuovo Cimento B 37(1), 1 (1977)
CrossRef
ADS
Google scholar
|
[34] |
G. A. Goldin, R. Menikoff, and D. H. Sharp, Particle statistics from induced representations of a local current group, J. Math. Phys. 21(4), 650 (1980)
CrossRef
ADS
Google scholar
|
[35] |
G. A. Goldin, R. Menikoff, and D. H. Sharp, Representations of a local current algebra in nonsimply connected space and the Aharonov−Bohm effect, J. Math. Phys. 22(8), 1664 (1981)
CrossRef
ADS
Google scholar
|
[36] |
F. Wilczek, Magnetic flux, angular momentum, and statistics, Phys. Rev. Lett. 48(17), 1144 (1982)
CrossRef
ADS
Google scholar
|
[37] |
F. Wilczek, Quantum mechanics of fractional-spin particles, Phys. Rev. Lett. 49(14), 957 (1982)
CrossRef
ADS
Google scholar
|
[38] |
G. S. Canright and S. M. Girvin, Fractional statistics: Quantum possibilities in two dimensions, Science 247(4947), 1197 (1990)
CrossRef
ADS
Google scholar
|
[39] |
F.D. M. Haldane, “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle, Phys. Rev. Lett. 67(8), 937 (1991)
|
[40] |
A. Kundu, Exact solution of double δ function Bose gas through an interacting anyon gas, Phys. Rev. Lett. 83(7), 1275 (1999)
CrossRef
ADS
Google scholar
|
[41] |
A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2 (2006)
CrossRef
ADS
Google scholar
|
[42] |
T. Keilmann, S. Lanzmich, I. McCulloch, and M. Roncaglia, Statistically induced phase transitions and anyons in 1D optical lattices, Nat. Commun. 2(1), 361 (2011)
CrossRef
ADS
arXiv
Google scholar
|
[43] |
H. Bartolomei, M. Kumar, R. Bisognin, A. Marguerite, J. M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, Q. Dong, U. Gennser, Y. Jin, and G. Fève, Fractional statistics in anyon collisions, Science 368(6487), 173 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[44] |
J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra, Direct observation of anyonic braiding statistics, Nat. Phys. 16(9), 931 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[45] |
M. T. Batchelor, X. W. Guan, and N. Oelkers, One-dimensional interacting anyon gas: Low-energy properties and Haldane exclusion statistics, Phys. Rev. Lett. 96(21), 210402 (2006)
CrossRef
ADS
Google scholar
|
[46] |
E. Fradkin, Jordan−Wigner transformation for quantum-spin systems in two dimensions and fractional statistics, Phys. Rev. Lett. 63(3), 322 (1989)
CrossRef
ADS
Google scholar
|
[47] |
S. Longhi and G. Della Valle, Anyonic Bloch oscillations, Phys. Rev. B 85(16), 165144 (2012)
CrossRef
ADS
Google scholar
|
[48] |
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)
CrossRef
ADS
arXiv
Google scholar
|
[49] |
T. Wang, X. Cheng, G. Zhang, K. Yuan, H. Chen, and L. Wang, Spin-gapless semiconductors for future spintronics and electronics, Phys. Rep. 888, 1 (2020)
CrossRef
ADS
Google scholar
|
[50] |
T. Yang, H. Wang, P. Li, T. Wang, X. Cheng, H. Wang, and G. Zhang, Topological nodal-point phononic systems, Matter 7(2), 320 (2024)
CrossRef
ADS
Google scholar
|
[51] |
F. Liu, J. R. Garrison, D. L. Deng, Z. X. Gong, and A. V. Gorshkov, Asymmetric particle transport and light-cone dynamics induced by anyonic statistics, Phys. Rev. Lett. 121(25), 250404 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[52] |
Y.QinC. H. LeeL.Li, Dynamical suppression of many-body non-Hermitian skin effect in anyonic systems, arXiv: 2024)
arXiv
|
[53] |
W. Zhang, H. Yuan, H. Wang, F. Di, N. Sun, X. Zheng, H. Sun, and X. Zhang, Observation of Bloch oscillations dominated by effective anyonic particle statistics, Nat. Commun. 13(1), 2392 (2022)
CrossRef
ADS
Google scholar
|
[54] |
W. Zhang, Q. Long, H. Sun, and X. Zhang, Anyonic bound states in the continuum, Commun. Phys. 6(1), 139 (2023)
CrossRef
ADS
Google scholar
|
[55] |
N. A. Olekhno, A. D. Rozenblit, A. A. Stepanenko, A. A. Dmitriev, D. A. Bobylev, and M. A. Gorlach, Topological transitions driven by quantum statistics and their electrical circuit emulation, Phys. Rev. B 105(20), 205113 (2022)
CrossRef
ADS
Google scholar
|
[56] |
V. Brosco, L. Pilozzi, and C. Conti, Two-flux tunable Aharonov−Bohm effect in a photonic lattice, Phys. Rev. B 104(2), 024306 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[57] |
J. M. Koh, T. Tai, and C. H. Lee, Realization of higher-order topological lattices on a quantum computer, Nat. Commun. 15(1), 5807 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[58] |
J. Ningyuan, C. Owens, A. Sommer, D. Schuster, and J. Simon, Time- and site-resolved dynamics in a topological circuit, Phys. Rev. X 5(2), 021031 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[59] |
V. V. Albert, L. I. Glazman, and L. Jiang, Topological properties of linear circuit lattices, Phys. Rev. Lett. 114(17), 173902 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[60] |
C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, and R. Thomale, Topolectrical circuits, Commun. Phys. 1(1), 39 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[61] |
S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Topolectrical-circuit realization of topological corner modes, Nat. Phys. 14(9), 925 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[62] |
Y. Wang, H. M. Price, B. Zhang, and Y. D. Chong, Circuit implementation of a four-dimensional topological insulator, Nat. Commun. 11(1), 2356 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[63] |
T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16(7), 747 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[64] |
N. A. Olekhno, E. I. Kretov, A. A. Stepanenko, P. A. Ivanova, V. V. Yaroshenko, E. M. Puhtina, D. S. Filonov, B. Cappello, L. Matekovits, and M. A. Gorlach, Topological edge states of interacting photon pairs realized in a topolectrical circuit, Nat. Commun. 11(1), 1436 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[65] |
W. Zhang, D. Zou, Q. Pei, W. He, J. Bao, H. Sun, and X. Zhang, Experimental observation of higher-order topological Anderson insulators, Phys. Rev. Lett. 126(14), 146802 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[66] |
J. Wu, Z. Wang, Y. Biao, F. Fei, S. Zhang, Z. Yin, Y. Hu, Z. Song, T. Wu, F. Song, and R. Yu, Non-Abelian gauge fields in circuit systems, Nat. Electron. 5(10), 635 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[67] |
L. Song, H. Yang, Y. Cao, and P. Yan, Square-root higher-order Weyl semimetals, Nat. Commun. 13(1), 5601 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[68] |
W. Zhang, H. Yuan, N. Sun, H. Sun, and X. Zhang, Observation of novel topological states in hyperbolic lattices, Nat. Commun. 13(1), 2937 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[69] |
W. Zhang, F. Di, X. Zheng, H. Sun, and X. Zhang, Hyperbolic band topology with non-trivial second Chern numbers, Nat. Commun. 14(1), 1083 (2023)
CrossRef
ADS
arXiv
Google scholar
|
/
〈 | 〉 |