Anyonic topological flat bands

Xiaoqi Zhou, Weixuan Zhang, Xiangdong Zhang

PDF(4736 KB)
PDF(4736 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 024205. DOI: 10.15302/frontphys.2025.024205
RESEARCH ARTICLE

Anyonic topological flat bands

Author information +
History +

Abstract

Topological flat bands have attracted significant interest across various branches of physics, where synthetic gauge fields are typically considered an essential prerequisite. Numerous mechanisms have been proposed for implementing these fields, including magnetic fields on electrons, differential optical paths for photons, and strain-induced effective magnetic fields, among others. In this work, we introduce a novel approach to generating synthetic gauge fields through quantum statistics and demonstrate their effectiveness in realizing anyonic topological flat bands. Notably, we discover that a pair of strongly interacting anyons can induce square-root topological flat bands within a lattice model that remains dispersive and topologically trivial for a single particle. To validate our theoretical predictions, we experimentally simulate the quantum statistics-induced topological flat bands and square-root topological boundary states by mapping the eigenstates of two anyons onto modes in electric circuits. Our findings not only open a new pathway for creating topological flat bands but also deepen our understanding of anyonic physics and the underlying principles of flat-band topology.

Graphical abstract

Keywords

topological flat bands / anyons / quantum statistics / topolectrical circuits

Cite this article

Download citation ▾
Xiaoqi Zhou, Weixuan Zhang, Xiangdong Zhang. Anyonic topological flat bands. Front. Phys., 2025, 20(2): 024205 https://doi.org/10.15302/frontphys.2025.024205

References

[1]
D. Leykam, A. Andreanov, and S. Flach, Artificial flat band systems: From lattice models to experiments, Adv. Phys. X 3(1), 1473052 (2018)
CrossRef ADS arXiv Google scholar
[2]
S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Öhberg, E. Andersson, and R. R. Thomson, Observation of a localized flat-band state in a photonic Lieb lattice, Phys. Rev. Lett. 114(24), 245504 (2015)
CrossRef ADS arXiv Google scholar
[3]
R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina, Observation of localized states in Lieb photonic lattices, Phys. Rev. Lett. 114(24), 245503 (2015)
CrossRef ADS arXiv Google scholar
[4]
M. R. Slot, T. S. Gardenier, P. H. Jacobse, G. C. P. van Miert, S. N. Kempkes, S. J. M. Zevenhuizen, C. M. Smith, D. Vanmaekelbergh, and I. Swart, Experimental realization and characterization of an electronic Lieb lattice, Nat. Phys. 13(7), 672 (2017)
CrossRef ADS arXiv Google scholar
[5]
P. Wang, Y. Zheng, X. Chen, C. Huang, Y. V. Kartashov, L. Torner, V. V. Konotop, and F. Ye, Localization and delocalization of light in photonic moiré lattices, Nature 577(7788), 42 (2020)
CrossRef ADS arXiv Google scholar
[6]
L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Superconductivity and strong correlations in moiré flat bands, Nat. Phys. 16(7), 725 (2020)
CrossRef ADS Google scholar
[7]
Y. Choi, H. Kim, C. Lewandowski, Y. Peng, A. Thomson, R. Polski, Y. Zhang, K. Watanabe, T. Taniguchi, J. Alicea, and S. Nadj-Perge, Interaction-driven band flattening and correlated phases in twisted bilayer graphene, Nat. Phys. 17(12), 1375 (2021)
CrossRef ADS Google scholar
[8]
D. Călugăru, A. Chew, L. Elcoro, Y. Xu, N. Regnault, Z. D. Song, and B. A. Bernevig, General construction and topological classification of crystalline flat bands, Nat. Phys. 18(2), 185 (2022)
CrossRef ADS arXiv Google scholar
[9]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef ADS Google scholar
[10]
Y. Aharonov and D. Bohm, Significance of electromagnetic potential in the quantum theory, Phys. Rev. 115(3), 485 (1959)
CrossRef ADS Google scholar
[11]
H. Aoki, M. Ando, and H. Matsumura, Hofstadter butterflies for flat bands, Phys. Rev. B 54(24), R17296 (1996)
CrossRef ADS Google scholar
[12]
J. Vidal, R. Mosseri, and B. Douçot, Aharonov−Bohm cages in two-dimensional structures, Phys. Rev. Lett. 81(26), 5888 (1998)
CrossRef ADS Google scholar
[13]
M. Creutz, End states, ladder compounds, and domain-wall fermions, Phys. Rev. Lett. 83(13), 2636 (1999)
CrossRef ADS Google scholar
[14]
C. C. Abilio, P. Butaud, T. Fournier, B. Pannetier, J. Vidal, S. Tedesco, and B. Dalzotto, Magnetic field induced localization in a two-dimensional superconducting wire network, Phys. Rev. Lett. 83(24), 5102 (1999)
CrossRef ADS Google scholar
[15]
S. Longhi, Aharonov–Bohm photonic cages in waveguide and coupled resonator lattices by synthetic magnetic fields, Opt. Lett. 39(20), 5892 (2014)
CrossRef ADS arXiv Google scholar
[16]
S. Mukherjee, M. Di Liberto, P. Öhberg, R. R. Thomson, and N. Goldman, Experimental observation of Aharonov−Bohm cages in photonic lattices, Phys. Rev. Lett. 121(7), 075502 (2018)
CrossRef ADS arXiv Google scholar
[17]
H. Wang, W. Zhang, H. Sun, and X. Zhang, Observation of inverse Anderson transitions in Aharonov−Bohm topolectrical circuits, Phys. Rev. B 106(10), 104203 (2022)
CrossRef ADS arXiv Google scholar
[18]
C. Jörg, G. Queraltó, M. Kremer, G. Pelegrí, J. Schulz, A. Szameit, G. von Freymann, J. Mompart, and V. Ahufinger, Artificial gauge field switching using orbital angular momentum modes in optical waveguides, Light Sci. Appl. 9(1), 150 (2020)
CrossRef ADS arXiv Google scholar
[19]
S. Li, Z. Y. Xue, M. Gong, and Y. Hu, Non-Abelian Aharonov−Bohm caging in photonic lattices, Phys. Rev. A 102(2), 023524 (2020)
CrossRef ADS arXiv Google scholar
[20]
H. Li, Z. Dong, S. Longhi, Q. Liang, D. Xie, and B. Yan, Aharonov−Bohm Caging and inverse Anderson transition in ultracold atoms, Phys. Rev. Lett. 129(22), 220403 (2022)
CrossRef ADS arXiv Google scholar
[21]
M.KremerI. PetridesE.MeyerM.HeinrichO.ZilberbergA.Szameit, A square-root topological insulator with non-quantized indices realized with photonic Aharonov−Bohm cages, Nat. Commun. 11(1), 907 (2020)
[22]
J. Vidal, B. Douçot, R. Mosseri, and P. Butaud, Interaction-induced delocalization for two particles in a periodic potential, Phys. Rev. Lett. 85(18), 3906 (2000)
CrossRef ADS Google scholar
[23]
C. E. Creffield and G. Platero, Coherent control of interacting particles using dynamical and Aharonov-Bohm Phases, Phys. Rev. Lett. 105(8), 086804 (2010)
CrossRef ADS arXiv Google scholar
[24]
J. G. Martinez, C. S. Chiu, B. M. Smitham, and A. A. Houck, Flat-band localization and interaction-induced delocalization of photons, Sci. Adv. 9(50), eadj7195 (2023)
CrossRef ADS arXiv Google scholar
[25]
G. Möller and N. R. Cooper, Correlated phases of bosons in the flat lowest band of the dice lattice, Phys. Rev. Lett. 108(4), 045306 (2012)
CrossRef ADS arXiv Google scholar
[26]
C. Cartwright, G. De Chiara, and M. Rizzi, Rhombi-chain Bose−Hubbard model: Geometric frustration and interactions, Phys. Rev. B 98(18), 184508 (2018)
CrossRef ADS arXiv Google scholar
[27]
G. Pelegrí, A. M. Marques, V. Ahufinger, J. Mompart, and R. G. Dias, Interaction-induced topological properties of two bosons in flat-band systems, Phys. Rev. Res. 2(3), 033267 (2020)
CrossRef ADS arXiv Google scholar
[28]
Y. Kuno, T. Mizoguchi, and Y. Hatsugai, Interaction-induced doublons and embedded topological subspace in a complete flat-band system, Phys. Rev. A 102(6), 063325 (2020)
CrossRef ADS arXiv Google scholar
[29]
M. Di Liberto, S. Mukherjee, and N. Goldman, Nonlinear dynamics of Aharonov−Bohm cages, Phys. Rev. A 100(4), 043829 (2019)
CrossRef ADS arXiv Google scholar
[30]
J. Zurita, C. E. Creffield, and G. Platero, Topology and interactions in the photonic Creutz and Creutz−Hubbard ladders, Adv. Quantum Technol. 3(2), 1900105 (2020)
CrossRef ADS arXiv Google scholar
[31]
C. Danieli, A. Andreanov, T. Mithun, and S. Flach, Quantum caging in interacting many-body all-bands-flat lattices, Phys. Rev. B 104(8), 085132 (2021)
CrossRef ADS arXiv Google scholar
[32]
E. Nicolau, A. M. Marques, R. G. Dias, J. Mompart, and V. Ahufinger, Many-body Aharonov−Bohm caging in a lattice of rings, Phys. Rev. A 107(2), 023305 (2023)
CrossRef ADS arXiv Google scholar
[33]
J. M. Leinaas and J. Myrheim, On the theory of identical particles, Nuovo Cimento B 37(1), 1 (1977)
CrossRef ADS Google scholar
[34]
G. A. Goldin, R. Menikoff, and D. H. Sharp, Particle statistics from induced representations of a local current group, J. Math. Phys. 21(4), 650 (1980)
CrossRef ADS Google scholar
[35]
G. A. Goldin, R. Menikoff, and D. H. Sharp, Representations of a local current algebra in nonsimply connected space and the Aharonov−Bohm effect, J. Math. Phys. 22(8), 1664 (1981)
CrossRef ADS Google scholar
[36]
F. Wilczek, Magnetic flux, angular momentum, and statistics, Phys. Rev. Lett. 48(17), 1144 (1982)
CrossRef ADS Google scholar
[37]
F. Wilczek, Quantum mechanics of fractional-spin particles, Phys. Rev. Lett. 49(14), 957 (1982)
CrossRef ADS Google scholar
[38]
G. S. Canright and S. M. Girvin, Fractional statistics: Quantum possibilities in two dimensions, Science 247(4947), 1197 (1990)
CrossRef ADS Google scholar
[39]
F.D. M. Haldane, “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle, Phys. Rev. Lett. 67(8), 937 (1991)
[40]
A. Kundu, Exact solution of double δ function Bose gas through an interacting anyon gas, Phys. Rev. Lett. 83(7), 1275 (1999)
CrossRef ADS Google scholar
[41]
A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2 (2006)
CrossRef ADS Google scholar
[42]
T. Keilmann, S. Lanzmich, I. McCulloch, and M. Roncaglia, Statistically induced phase transitions and anyons in 1D optical lattices, Nat. Commun. 2(1), 361 (2011)
CrossRef ADS arXiv Google scholar
[43]
H. Bartolomei, M. Kumar, R. Bisognin, A. Marguerite, J. M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, Q. Dong, U. Gennser, Y. Jin, and G. Fève, Fractional statistics in anyon collisions, Science 368(6487), 173 (2020)
CrossRef ADS arXiv Google scholar
[44]
J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra, Direct observation of anyonic braiding statistics, Nat. Phys. 16(9), 931 (2020)
CrossRef ADS arXiv Google scholar
[45]
M. T. Batchelor, X. W. Guan, and N. Oelkers, One-dimensional interacting anyon gas: Low-energy properties and Haldane exclusion statistics, Phys. Rev. Lett. 96(21), 210402 (2006)
CrossRef ADS Google scholar
[46]
E. Fradkin, Jordan−Wigner transformation for quantum-spin systems in two dimensions and fractional statistics, Phys. Rev. Lett. 63(3), 322 (1989)
CrossRef ADS Google scholar
[47]
S. Longhi and G. Della Valle, Anyonic Bloch oscillations, Phys. Rev. B 85(16), 165144 (2012)
CrossRef ADS Google scholar
[48]
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)
CrossRef ADS arXiv Google scholar
[49]
T. Wang, X. Cheng, G. Zhang, K. Yuan, H. Chen, and L. Wang, Spin-gapless semiconductors for future spintronics and electronics, Phys. Rep. 888, 1 (2020)
CrossRef ADS Google scholar
[50]
T. Yang, H. Wang, P. Li, T. Wang, X. Cheng, H. Wang, and G. Zhang, Topological nodal-point phononic systems, Matter 7(2), 320 (2024)
CrossRef ADS Google scholar
[51]
F. Liu, J. R. Garrison, D. L. Deng, Z. X. Gong, and A. V. Gorshkov, Asymmetric particle transport and light-cone dynamics induced by anyonic statistics, Phys. Rev. Lett. 121(25), 250404 (2018)
CrossRef ADS arXiv Google scholar
[52]
Y.QinC. H. LeeL.Li, Dynamical suppression of many-body non-Hermitian skin effect in anyonic systems, arXiv: 2024)
arXiv
[53]
W. Zhang, H. Yuan, H. Wang, F. Di, N. Sun, X. Zheng, H. Sun, and X. Zhang, Observation of Bloch oscillations dominated by effective anyonic particle statistics, Nat. Commun. 13(1), 2392 (2022)
CrossRef ADS Google scholar
[54]
W. Zhang, Q. Long, H. Sun, and X. Zhang, Anyonic bound states in the continuum, Commun. Phys. 6(1), 139 (2023)
CrossRef ADS Google scholar
[55]
N. A. Olekhno, A. D. Rozenblit, A. A. Stepanenko, A. A. Dmitriev, D. A. Bobylev, and M. A. Gorlach, Topological transitions driven by quantum statistics and their electrical circuit emulation, Phys. Rev. B 105(20), 205113 (2022)
CrossRef ADS Google scholar
[56]
V. Brosco, L. Pilozzi, and C. Conti, Two-flux tunable Aharonov−Bohm effect in a photonic lattice, Phys. Rev. B 104(2), 024306 (2021)
CrossRef ADS arXiv Google scholar
[57]
J. M. Koh, T. Tai, and C. H. Lee, Realization of higher-order topological lattices on a quantum computer, Nat. Commun. 15(1), 5807 (2024)
CrossRef ADS arXiv Google scholar
[58]
J. Ningyuan, C. Owens, A. Sommer, D. Schuster, and J. Simon, Time- and site-resolved dynamics in a topological circuit, Phys. Rev. X 5(2), 021031 (2015)
CrossRef ADS arXiv Google scholar
[59]
V. V. Albert, L. I. Glazman, and L. Jiang, Topological properties of linear circuit lattices, Phys. Rev. Lett. 114(17), 173902 (2015)
CrossRef ADS arXiv Google scholar
[60]
C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, and R. Thomale, Topolectrical circuits, Commun. Phys. 1(1), 39 (2018)
CrossRef ADS arXiv Google scholar
[61]
S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and R. Thomale, Topolectrical-circuit realization of topological corner modes, Nat. Phys. 14(9), 925 (2018)
CrossRef ADS arXiv Google scholar
[62]
Y. Wang, H. M. Price, B. Zhang, and Y. D. Chong, Circuit implementation of a four-dimensional topological insulator, Nat. Commun. 11(1), 2356 (2020)
CrossRef ADS arXiv Google scholar
[63]
T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16(7), 747 (2020)
CrossRef ADS arXiv Google scholar
[64]
N. A. Olekhno, E. I. Kretov, A. A. Stepanenko, P. A. Ivanova, V. V. Yaroshenko, E. M. Puhtina, D. S. Filonov, B. Cappello, L. Matekovits, and M. A. Gorlach, Topological edge states of interacting photon pairs realized in a topolectrical circuit, Nat. Commun. 11(1), 1436 (2020)
CrossRef ADS arXiv Google scholar
[65]
W. Zhang, D. Zou, Q. Pei, W. He, J. Bao, H. Sun, and X. Zhang, Experimental observation of higher-order topological Anderson insulators, Phys. Rev. Lett. 126(14), 146802 (2021)
CrossRef ADS arXiv Google scholar
[66]
J. Wu, Z. Wang, Y. Biao, F. Fei, S. Zhang, Z. Yin, Y. Hu, Z. Song, T. Wu, F. Song, and R. Yu, Non-Abelian gauge fields in circuit systems, Nat. Electron. 5(10), 635 (2022)
CrossRef ADS arXiv Google scholar
[67]
L. Song, H. Yang, Y. Cao, and P. Yan, Square-root higher-order Weyl semimetals, Nat. Commun. 13(1), 5601 (2022)
CrossRef ADS arXiv Google scholar
[68]
W. Zhang, H. Yuan, N. Sun, H. Sun, and X. Zhang, Observation of novel topological states in hyperbolic lattices, Nat. Commun. 13(1), 2937 (2022)
CrossRef ADS arXiv Google scholar
[69]
W. Zhang, F. Di, X. Zheng, H. Sun, and X. Zhang, Hyperbolic band topology with non-trivial second Chern numbers, Nat. Commun. 14(1), 1083 (2023)
CrossRef ADS arXiv Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://journal.hep.com.cn/fop/EN/pdf/10.15302/frontphys.2025.024205.

Acknowledgements

This work was supported by the National Key R&D Program of China under Grant No. 2022YFA1404900 and the National Natural Science Foundation of China under Grant No.12422411.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4736 KB)

Accesses

Citations

Detail

Sections
Recommended

/