Reentrant localization transitions in a topological Anderson insulator: A study of a generalized Su−Schrieffer−Heeger quasicrystal

Zhanpeng Lu, Yunbo Zhang, Zhihao Xu

PDF(5004 KB)
PDF(5004 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 024204. DOI: 10.15302/frontphys.2025.024204
RESEARCH ARTICLE

Reentrant localization transitions in a topological Anderson insulator: A study of a generalized Su−Schrieffer−Heeger quasicrystal

Author information +
History +

Abstract

We study the topology and localization properties of a generalized Su−Schrieffer−Heeger (SSH) model with a quasi-periodic modulated hopping. It is found that the interplay of off-diagonal quasi-periodic modulations can induce topological Anderson insulator (TAI) phases and reentrant topological Anderson insulator (RTAI), and the topological phase boundaries can be uncovered by the divergence of the localization length of the zero-energy mode. In contrast to the conventional case that the TAI regime emerges in a finite range with the increase of disorder, the TAI and RTAI are robust against arbitrary modulation amplitude for our system. Furthermore, we find that the TAI and RTAI can induce the emergence of reentrant localization transitions. Such an interesting connection between the reentrant localization transition and the TAI/RTAI can be detected from the wave-packet dynamics in cold atom systems by adopting the technique of momentum-lattice engineering.

Graphical abstract

Keywords

topological Anderson insulator / localization / quasi-periodic systems

Cite this article

Download citation ▾
Zhanpeng Lu, Yunbo Zhang, Zhihao Xu. Reentrant localization transitions in a topological Anderson insulator: A study of a generalized Su−Schrieffer−Heeger quasicrystal. Front. Phys., 2025, 20(2): 024204 https://doi.org/10.15302/frontphys.2025.024204

References

[1]
P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)
CrossRef ADS Google scholar
[2]
P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57(2), 287 (1985)
CrossRef ADS Google scholar
[3]
J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder, Nature 453(7197), 891 (2008)
CrossRef ADS Google scholar
[4]
G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Anderson localization of a non-interacting Bose–Einstein condensate, Nature 453(7197), 895 (2008)
CrossRef ADS Google scholar
[5]
A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Statistical signatures of photon localization, Nature 404(6780), 850 (2000)
CrossRef ADS Google scholar
[6]
P. Pradhan and S. Sridhar, Correlations due to localization in quantum eigenfunctions of disordered microwave cavities, Phys. Rev. Lett. 85(11), 2360 (2000)
CrossRef ADS Google scholar
[7]
Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett. 103(1), 013901 (2009)
CrossRef ADS Google scholar
[8]
N. Mott, The mobility edge since 1967, J. Phys. C 20(21), 3075 (1987)
CrossRef ADS Google scholar
[9]
S. Aubry and G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3, 133 (1980)
CrossRef ADS Google scholar
[10]
P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. A 68(10), 874 (1955)
CrossRef ADS Google scholar
[11]
S. Longhi, Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122(23), 237601 (2019)
CrossRef ADS Google scholar
[12]
S. Longhi, Metal−insulator phase transition in a non-Hermitian Aubry−André−Harper model, Phys. Rev. B 100(12), 125157 (2019)
CrossRef ADS Google scholar
[13]
Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Topological states and adiabatic pumping in quasicrystals, Phys. Rev. Lett. 109(10), 106402 (2012)
CrossRef ADS Google scholar
[14]
M. Segev, Y. Silberberg, and D. N. Christodoulides, Anderson localization of light, Nat. Photonics 7(3), 197 (2013)
CrossRef ADS Google scholar
[15]
J. Biddle and S. Das Sarma, Predicted mobility edges in one-dimensional incommensurate optical lattices: An exactly solvable model of Anderson localization, Phys. Rev. Lett. 104(7), 070601 (2010)
CrossRef ADS Google scholar
[16]
S. Ganeshan, J. H. Pixley, and S. Das Sarma, Nearest neighbor tight binding models with an exact mobility edge in one dimension, Phys. Rev. Lett. 114(14), 146601 (2015)
CrossRef ADS Google scholar
[17]
Y. Wang, L. Zhang, W. Sun, T. F. J. Poon, and X. J. Liu, Quantum phase with coexisting localized, extended, and critical zones, Phys. Rev. B 106(14), L140203 (2022)
CrossRef ADS Google scholar
[18]
X.C. ZhouY. WangT.F. J. PoonQ.ZhouX.J. Liu, Exact new mobility edges between critical and localized states, arXiv: 2022)
arXiv
[19]
T. Liu, X. Xia, S. Longhi, and L. Sanchez-Palencia, Anomalous mobility edges in one-dimensional quasiperiodic models, SciPost Phys. 12, 027 (2022)
CrossRef ADS Google scholar
[20]
W. Chen, S. Cheng, J. Lin, R. Asgari, and X. L. Gao, Breakdown of the correspondence between the real-complex and delocalization−localization transitions in non-Hermitian quasicrystals, Phys. Rev. B 106(14), 144208 (2022)
CrossRef ADS Google scholar
[21]
D. Peng, S. Cheng, and X. L. Gao, Power law hopping of single particles in one-dimensional non-Hermitian quasicrystals, Phys. Rev. B 107(17), 174205 (2023)
CrossRef ADS Google scholar
[22]
S. Roy, T. Mishra, B. Tanatar, and S. Basu, Reentrant localization transition in a quasiperiodic chain, Phys. Rev. Lett. 126(10), 106803 (2021)
CrossRef ADS Google scholar
[23]
A. Padhan, M. K. Giri, S. Mondal, and T. Mishra, Emergence of multiple localization transitions in a one-dimensional quasiperiodic lattice, Phys. Rev. B 105(22), L220201 (2022)
CrossRef ADS Google scholar
[24]
Z. W. Zuo and D. Kang, Reentrant localization transition in the Su-Schrieffer-Heeger model with random-dimer disorder, Phys. Rev. A 106(1), 013305 (2022)
CrossRef ADS Google scholar
[25]
S. Aditya, K. Sengupta, and D. Sen, Periodically driven model with quasiperiodic potential and staggered hopping amplitudes: Engineering of mobility gaps and multifractal states, Phys. Rev. B 107(3), 035402 (2023)
CrossRef ADS Google scholar
[26]
S. Roy, S. Chattopadhyay, T. Mishra, and S. Basu, Critical analysis of the reentrant localization transition in a one-dimensional dimerized quasiperiodic lattice, Phys. Rev. B 105(21), 214203 (2022)
CrossRef ADS Google scholar
[27]
R. Qi, J. Cao, and X. P. Jiang, Multiple localization transitions and novel quantum phases induced by a staggered on-site potential, Phys. Rev. B 107(22), 224201 (2023)
CrossRef ADS Google scholar
[28]
R.QiJ.Cao X.P. Jiang, Localization and mobility edges in non-Hermitian disorder-free lattices, arXiv: 2023)
arXiv
[29]
P.S. NairD. JoyS.Sanyal, Emergent scale and anomalous dynamics in certain quasi-periodic systems, arXiv: 2023)
arXiv
[30]
S.Z. LiZ. Li, The multiple re-entrant localization in a phase-shift quasiperiodic chain, arXiv: 2023)
arXiv
[31]
S.Z. LiZ. Li, Emergent recurrent extension phase transition in a quasiperiodic chain, arXiv: 2023)
arXiv
[32]
C. Wu, J. Fan, G. Chen, and S. Jia, Non-Hermiticity-induced reentrant localization in a quasiperiodic lattice, New J. Phys. 23(12), 123048 (2021)
CrossRef ADS Google scholar
[33]
X. P. Jiang, Y. Qiao, and J. P. Cao, Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice, Chin. Phys. B 30(9), 097202 (2021)
CrossRef ADS Google scholar
[34]
L. Zhou and W. Han, Driving-induced multiple PT-symmetry breaking transitions and reentrant localization transitions in non-Hermitian Floquet quasicrystals, Phys. Rev. B 106(5), 054307 (2022)
CrossRef ADS Google scholar
[35]
W. Han and L. Zhou, Dimerization-induced mobility edges and multiple reentrant localization transitions in non-Hermitian quasicrystals, Phys. Rev. B 105(5), 054204 (2022)
CrossRef ADS Google scholar
[36]
H. Wang, X. Zheng, J. Chen, L. Xiao, S. Jia, and L. Zhang, Fate of the reentrant localization phenomenon in the one-dimensional dimerized quasiperiodic chain with long-range hopping, Phys. Rev. B 107(7), 075128 (2023)
CrossRef ADS Google scholar
[37]
S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra, and Y. Takahashi, Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms, Nat. Phys. 17(7), 844 (2021)
CrossRef ADS Google scholar
[38]
S. Cheng, H. Yin, Z. Lu, C. He, P. Wang, and X. L. Gao, Predicting large-Chern-number phases in a shaken optical dice lattice, Phys. Rev. A 101(4), 043620 (2020)
CrossRef ADS Google scholar
[39]
S. Cheng and X. L. Gao, Topological Floquet bands in a circularly shaken dice lattice, Phys. Rev. Res. 4(3), 033194 (2022)
CrossRef ADS Google scholar
[40]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef ADS Google scholar
[41]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[42]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[43]
A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
CrossRef ADS Google scholar
[44]
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
CrossRef ADS Google scholar
[45]
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
CrossRef ADS Google scholar
[46]
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)
CrossRef ADS Google scholar
[47]
F. Song, S. Yao, and Z. Wang, Non-Hermitian topological invariants in real space, Phys. Rev. Lett. 123(24), 246801 (2019)
CrossRef ADS Google scholar
[48]
W. Song, W. Sun, C. Chen, Q. Song, S. Xiao, S. Zhu, and T. Li, Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices, Phys. Rev. Lett. 123(16), 165701 (2019)
CrossRef ADS Google scholar
[49]
Z. Xu, R. Zhang, S. Chen, L. Fu, and Y. Zhang, Fate of zero modes in a finite Su-Schrieffer-Heeger model with PT symmetry, Phys. Rev. A 101(1), 013635 (2020)
CrossRef ADS Google scholar
[50]
T. Xiao, D. Xie, Z. Dong, T. Chen, W. Yi, and B. Yan, Observation of topological phase with critical localization in a quasi-periodic lattice, Sci. Bull. (Beijing) 66(21), 2175 (2021)
CrossRef ADS Google scholar
[51]
E. Prodan, T. L. Hughes, and B. A. Bernevig, Entanglement spectrum of a disordered topological Chern insulator, Phys. Rev. Lett. 105(11), 115501 (2010)
CrossRef ADS Google scholar
[52]
X. Cai, L. J. Lang, S. Chen, and Y. Wang, Topological superconductor to Anderson localization transition in one-dimensional incommensurate lattices, Phys. Rev. Lett. 110(17), 176403 (2013)
CrossRef ADS Google scholar
[53]
J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states, Phys. Rev. Lett. 109(26), 267002 (2012)
CrossRef ADS Google scholar
[54]
H. Pan and S. Das Sarma, Disorder effects on Majorana zero modes: Kitaev chain versus semiconductor nanowire, Phys. Rev. B 103(22), 224505 (2021)
CrossRef ADS Google scholar
[55]
J. Li, R. L. Chu, J. K. Jain, and S. Q. Shen, Topological Anderson insulator, Phys. Rev. Lett. 102(13), 136806 (2009)
CrossRef ADS Google scholar
[56]
H. M. Guo, G. Rosenberg, G. Refael, and M. Franz, Topological Anderson insulator in three dimensions, Phys. Rev. Lett. 105(21), 216601 (2010)
CrossRef ADS Google scholar
[57]
Y. Y. Zhang, R. L. Chu, F. C. Zhang, and S. Q. Shen, Localization and mobility gap in the topological Anderson insulator, Phys. Rev. B 85(3), 035107 (2012)
CrossRef ADS Google scholar
[58]
D. W. Zhang, L. Z. Tang, L. J. Lang, H. Yan, and S. L. Zhu, Non-Hermitian topological Anderson insulators, Sci. China Phys. Mech. Astron. 63(6), 267062 (2020)
CrossRef ADS Google scholar
[59]
C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydlo, and C. W. J. Beenakker, Theory of the topological Anderson insulator, Phys. Rev. Lett. 103(19), 196805 (2009)
CrossRef ADS Google scholar
[60]
A. Girschik, F. Libisch, and S. Rotter, Topological insulator in the presence of spatially correlated disorder, Phys. Rev. B 88(1), 014201 (2013)
CrossRef ADS Google scholar
[61]
L. Z. Tang, S. N. Liu, G. Q. Zhang, and D. W. Zhang, Topological Anderson insulators with different bulk states in quasiperiodic chains, Phys. Rev. A 105(6), 063327 (2022)
CrossRef ADS Google scholar
[62]
Y. P. Wu, L. Z. Tang, G. Q. Zhang, and D. W. Zhang, Quantized topological Anderson-Thouless pump, Phys. Rev. A 106(5), L051301 (2022)
CrossRef ADS Google scholar
[63]
S. N. Liu, G. Q. Zhang, L. Z. Tang, and D. W. Zhang, Topological Anderson insulators induced by random binary disorders, Phys. Lett. A 431, 128004 (2022)
CrossRef ADS Google scholar
[64]
J. Song, H. Liu, H. Jiang, Q. F. Sun, and X. C. Xie, Dependence of topological Anderson insulator on the type of disorder, Phys. Rev. B 85(19), 195125 (2012)
CrossRef ADS Google scholar
[65]
I. Mondragon-Shem, T. L. Hughes, J. Song, and E. Prodan, Topological criticality in the chiral-symmetric AIII class at strong disorder, Phys. Rev. Lett. 113(4), 046802 (2014)
CrossRef ADS Google scholar
[66]
Z. Q. Zhang, B. L. Wu, J. Song, and H. Jiang, Topological Anderson insulator in electric circuits, Phys. Rev. B 100(18), 184202 (2019)
CrossRef ADS Google scholar
[67]
L. Z. Tang, L. F. Zhang, G. Q. Zhang, and D. W. Zhang, Topological Anderson insulators in two-dimensional non-Hermitian disordered systems, Phys. Rev. A 101(6), 063612 (2020)
CrossRef ADS Google scholar
[68]
J. Borchmann, A. Farrell, and T. Pereg-Barnea, Anderson topological superconductor, Phys. Rev. B 93(12), 125133 (2016)
CrossRef ADS Google scholar
[69]
C. B. Hua, R. Chen, D. H. Xu, and B. Zhou, Disorder-induced Majorana zero modes in a dimerized Kitaev superconductor chain, Phys. Rev. B 100(20), 205302 (2019)
CrossRef ADS Google scholar
[70]
G. Q. Zhang, L. Z. Tang, L. F. Zhang, D. W. Zhang, and S. L. Zhu, Connecting topological Anderson and Mott insulators in disordered interacting fermionic systems, Phys. Rev. B 104(16), L161118 (2021)
CrossRef ADS Google scholar
[71]
S. Velury, B. Bradlyn, and T. L. Hughes, Topological crystalline phases in a disordered inversion-symmetric chain, Phys. Rev. B 103(2), 024205 (2021)
CrossRef ADS Google scholar
[72]
W. J. Zhang, Y. P. Wu, L. Z. Tang, and G. Q. Zhang, Topological and dynamical phase transitions in the Su–Schrieffer–Heeger model with quasiperiodic and long-range hoppings, Commum. Theor. Phys. 74(7), 075702 (2022)
CrossRef ADS Google scholar
[73]
H. Jiang, L. Wang, Q. F. Sun, and X. C. Xie, Numerical study of the topological Anderson insulator in HgTe/CdTe quantum wells, Phys. Rev. B 80(16), 165316 (2009)
CrossRef ADS Google scholar
[74]
S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman, and A. Szameit, Photonic topological Anderson insulators, Nature 560(7719), 461 (2018)
CrossRef ADS Google scholar
[75]
G. G. Liu, Y. Yang, X. Ren, H. Xue, X. Lin, Y. H. Hu, H. X. Sun, B. Peng, P. Zhou, Y. Chong, and B. Zhang, Topological Anderson insulator in disordered photonic crystals, Phys. Rev. Lett. 125(13), 133603 (2020)
CrossRef ADS Google scholar
[76]
E. J. Meier, F. A. An, A. Dauphin, M. Maffei, P. Massignan, T. L. Hughes, and B. Gadway, Observation of the topological Anderson insulator in disordered atomic wires, Science 362(6417), 929 (2018)
CrossRef ADS Google scholar
[77]
S. Longhi, Topological Anderson phase in quasi-periodic waveguide lattices, Opt. Lett. 45(14), 4036 (2020)
CrossRef ADS Google scholar
[78]
Z. Lu, Z. Xu, and Y. Zhang, Exact mobility edges and topological Anderson insulating phase in a slowly varying quasiperiodic model, Ann. Phys. 534(8), 2200203 (2022)
CrossRef ADS Google scholar
[79]
Z. H. Wang, F. Xu, L. Li, D. H. Xu, and B. Wang, Topological superconductors and exact mobility edges in non-Hermitian quasicrystals, Phys. Rev. B 105(2), 024514 (2022)
CrossRef ADS Google scholar
[80]
A. MacKinnon and B. Kramer, The scaling theory of electrons in disordered solids: Additional numerical results, Z. Phys. B 53(1), 1 (1983)
CrossRef ADS Google scholar
[81]
Y. Wang, L. Zhang, S. Niu, D. Yu, and X. J. Liu, Realization and detection of nonergodic critical phases in an optical Raman lattice, Phys. Rev. Lett. 125(7), 073204 (2020)
CrossRef ADS Google scholar
[82]
Y. C. Zhang, Y. Y. Zhang, Lyapunov exponent, and mobility edges, and critical region in the generalized Aubry−André model with an unbounded quasiperiodic potential, Phys. Rev. B 105(17), 174206 (2022)
CrossRef ADS Google scholar
[83]
Y. Liu, Y. Wang, Z. Zheng, and S. Chen, Exact non-Hermitian mobility edges in one-dimensional quasicrystal lattice with exponentially decaying hopping and its dual lattice, Phys. Rev. B 103(13), 134208 (2021)
CrossRef ADS Google scholar
[84]
X. Li and S. Das Sarma, Mobility edge and intermediate phase in one-dimensional incommensurate lattice potentials, Phys. Rev. B 101(6), 064203 (2020)
CrossRef ADS Google scholar
[85]
J.K. AsbóthL.OroszlányA. Pályi, A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions, Springer International Publishing, Switzerland, 2016
[86]
H. P. Lüschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia, X. Li, S. Das Sarma, and I. Bloch, Single-particle mobility edge in a one-dimensional quasiperiodic optical lattice, Phys. Rev. Lett. 120(16), 160404 (2018)
CrossRef ADS Google scholar
[87]
Z. Xu, H. Huangfu, Y. Zhang, and S. Chen, Dynamical observation of mobility edges in one-dimensional incommensurate optical lattices, New J. Phys. 22(1), 013036 (2020)
CrossRef ADS Google scholar
[88]
H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77(3), 313 (1916)
CrossRef ADS Google scholar
[89]
G. H. Choe, Ergodicity and irrational rotations, Proc. R. Ir. Acad. 93A, 193 (1993)
[90]
A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2 (2006)
CrossRef ADS Google scholar
[91]
L. Lin, Y. Ke, and C. Lee, Real-space representation of the winding number for a one-dimensional chiral-symmetric topological insulator, Phys. Rev. B 103(22), 224208 (2021)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Acknowledgements

Z.X. was supported by the National Natural Science Foundation of China (Grant No. 12375016), the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302123442), and Beijing National Laboratory for Condensed Matter Physics (No. 2023BNLCMPKF001). Y. Zhang was supported by the National Natural Science Foundation of China (No. 12074340). This work was also supported by the Natural Science Foundation for Shanxi Province (Grant No. 1331KSC).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5004 KB)

Accesses

Citations

Detail

Sections
Recommended

/