Reentrant localization transitions in a topological Anderson insulator: A study of a generalized Su−Schrieffer−Heeger quasicrystal
Zhanpeng Lu, Yunbo Zhang, Zhihao Xu
Reentrant localization transitions in a topological Anderson insulator: A study of a generalized Su−Schrieffer−Heeger quasicrystal
We study the topology and localization properties of a generalized Su−Schrieffer−Heeger (SSH) model with a quasi-periodic modulated hopping. It is found that the interplay of off-diagonal quasi-periodic modulations can induce topological Anderson insulator (TAI) phases and reentrant topological Anderson insulator (RTAI), and the topological phase boundaries can be uncovered by the divergence of the localization length of the zero-energy mode. In contrast to the conventional case that the TAI regime emerges in a finite range with the increase of disorder, the TAI and RTAI are robust against arbitrary modulation amplitude for our system. Furthermore, we find that the TAI and RTAI can induce the emergence of reentrant localization transitions. Such an interesting connection between the reentrant localization transition and the TAI/RTAI can be detected from the wave-packet dynamics in cold atom systems by adopting the technique of momentum-lattice engineering.
topological Anderson insulator / localization / quasi-periodic systems
[1] |
P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)
CrossRef
ADS
Google scholar
|
[2] |
P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57(2), 287 (1985)
CrossRef
ADS
Google scholar
|
[3] |
J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder, Nature 453(7197), 891 (2008)
CrossRef
ADS
Google scholar
|
[4] |
G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Anderson localization of a non-interacting Bose–Einstein condensate, Nature 453(7197), 895 (2008)
CrossRef
ADS
Google scholar
|
[5] |
A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Statistical signatures of photon localization, Nature 404(6780), 850 (2000)
CrossRef
ADS
Google scholar
|
[6] |
P. Pradhan and S. Sridhar, Correlations due to localization in quantum eigenfunctions of disordered microwave cavities, Phys. Rev. Lett. 85(11), 2360 (2000)
CrossRef
ADS
Google scholar
|
[7] |
Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett. 103(1), 013901 (2009)
CrossRef
ADS
Google scholar
|
[8] |
N. Mott, The mobility edge since 1967, J. Phys. C 20(21), 3075 (1987)
CrossRef
ADS
Google scholar
|
[9] |
S. Aubry and G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3, 133 (1980)
CrossRef
ADS
Google scholar
|
[10] |
P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. A 68(10), 874 (1955)
CrossRef
ADS
Google scholar
|
[11] |
S. Longhi, Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122(23), 237601 (2019)
CrossRef
ADS
Google scholar
|
[12] |
S. Longhi, Metal−insulator phase transition in a non-Hermitian Aubry−André−Harper model, Phys. Rev. B 100(12), 125157 (2019)
CrossRef
ADS
Google scholar
|
[13] |
Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Topological states and adiabatic pumping in quasicrystals, Phys. Rev. Lett. 109(10), 106402 (2012)
CrossRef
ADS
Google scholar
|
[14] |
M. Segev, Y. Silberberg, and D. N. Christodoulides, Anderson localization of light, Nat. Photonics 7(3), 197 (2013)
CrossRef
ADS
Google scholar
|
[15] |
J. Biddle and S. Das Sarma, Predicted mobility edges in one-dimensional incommensurate optical lattices: An exactly solvable model of Anderson localization, Phys. Rev. Lett. 104(7), 070601 (2010)
CrossRef
ADS
Google scholar
|
[16] |
S. Ganeshan, J. H. Pixley, and S. Das Sarma, Nearest neighbor tight binding models with an exact mobility edge in one dimension, Phys. Rev. Lett. 114(14), 146601 (2015)
CrossRef
ADS
Google scholar
|
[17] |
Y. Wang, L. Zhang, W. Sun, T. F. J. Poon, and X. J. Liu, Quantum phase with coexisting localized, extended, and critical zones, Phys. Rev. B 106(14), L140203 (2022)
CrossRef
ADS
Google scholar
|
[18] |
X.C. ZhouY. WangT.F. J. PoonQ.ZhouX.J. Liu, Exact new mobility edges between critical and localized states, arXiv: 2022)
arXiv
|
[19] |
T. Liu, X. Xia, S. Longhi, and L. Sanchez-Palencia, Anomalous mobility edges in one-dimensional quasiperiodic models, SciPost Phys. 12, 027 (2022)
CrossRef
ADS
Google scholar
|
[20] |
W. Chen, S. Cheng, J. Lin, R. Asgari, and X. L. Gao, Breakdown of the correspondence between the real-complex and delocalization−localization transitions in non-Hermitian quasicrystals, Phys. Rev. B 106(14), 144208 (2022)
CrossRef
ADS
Google scholar
|
[21] |
D. Peng, S. Cheng, and X. L. Gao, Power law hopping of single particles in one-dimensional non-Hermitian quasicrystals, Phys. Rev. B 107(17), 174205 (2023)
CrossRef
ADS
Google scholar
|
[22] |
S. Roy, T. Mishra, B. Tanatar, and S. Basu, Reentrant localization transition in a quasiperiodic chain, Phys. Rev. Lett. 126(10), 106803 (2021)
CrossRef
ADS
Google scholar
|
[23] |
A. Padhan, M. K. Giri, S. Mondal, and T. Mishra, Emergence of multiple localization transitions in a one-dimensional quasiperiodic lattice, Phys. Rev. B 105(22), L220201 (2022)
CrossRef
ADS
Google scholar
|
[24] |
Z. W. Zuo and D. Kang, Reentrant localization transition in the Su-Schrieffer-Heeger model with random-dimer disorder, Phys. Rev. A 106(1), 013305 (2022)
CrossRef
ADS
Google scholar
|
[25] |
S. Aditya, K. Sengupta, and D. Sen, Periodically driven model with quasiperiodic potential and staggered hopping amplitudes: Engineering of mobility gaps and multifractal states, Phys. Rev. B 107(3), 035402 (2023)
CrossRef
ADS
Google scholar
|
[26] |
S. Roy, S. Chattopadhyay, T. Mishra, and S. Basu, Critical analysis of the reentrant localization transition in a one-dimensional dimerized quasiperiodic lattice, Phys. Rev. B 105(21), 214203 (2022)
CrossRef
ADS
Google scholar
|
[27] |
R. Qi, J. Cao, and X. P. Jiang, Multiple localization transitions and novel quantum phases induced by a staggered on-site potential, Phys. Rev. B 107(22), 224201 (2023)
CrossRef
ADS
Google scholar
|
[28] |
R.QiJ.Cao X.P. Jiang, Localization and mobility edges in non-Hermitian disorder-free lattices, arXiv: 2023)
arXiv
|
[29] |
P.S. NairD. JoyS.Sanyal, Emergent scale and anomalous dynamics in certain quasi-periodic systems, arXiv: 2023)
arXiv
|
[30] |
S.Z. LiZ. Li, The multiple re-entrant localization in a phase-shift quasiperiodic chain, arXiv: 2023)
arXiv
|
[31] |
S.Z. LiZ. Li, Emergent recurrent extension phase transition in a quasiperiodic chain, arXiv: 2023)
arXiv
|
[32] |
C. Wu, J. Fan, G. Chen, and S. Jia, Non-Hermiticity-induced reentrant localization in a quasiperiodic lattice, New J. Phys. 23(12), 123048 (2021)
CrossRef
ADS
Google scholar
|
[33] |
X. P. Jiang, Y. Qiao, and J. P. Cao, Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice, Chin. Phys. B 30(9), 097202 (2021)
CrossRef
ADS
Google scholar
|
[34] |
L. Zhou and W. Han, Driving-induced multiple PT-symmetry breaking transitions and reentrant localization transitions in non-Hermitian Floquet quasicrystals, Phys. Rev. B 106(5), 054307 (2022)
CrossRef
ADS
Google scholar
|
[35] |
W. Han and L. Zhou, Dimerization-induced mobility edges and multiple reentrant localization transitions in non-Hermitian quasicrystals, Phys. Rev. B 105(5), 054204 (2022)
CrossRef
ADS
Google scholar
|
[36] |
H. Wang, X. Zheng, J. Chen, L. Xiao, S. Jia, and L. Zhang, Fate of the reentrant localization phenomenon in the one-dimensional dimerized quasiperiodic chain with long-range hopping, Phys. Rev. B 107(7), 075128 (2023)
CrossRef
ADS
Google scholar
|
[37] |
S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra, and Y. Takahashi, Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms, Nat. Phys. 17(7), 844 (2021)
CrossRef
ADS
Google scholar
|
[38] |
S. Cheng, H. Yin, Z. Lu, C. He, P. Wang, and X. L. Gao, Predicting large-Chern-number phases in a shaken optical dice lattice, Phys. Rev. A 101(4), 043620 (2020)
CrossRef
ADS
Google scholar
|
[39] |
S. Cheng and X. L. Gao, Topological Floquet bands in a circularly shaken dice lattice, Phys. Rev. Res. 4(3), 033194 (2022)
CrossRef
ADS
Google scholar
|
[40] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef
ADS
Google scholar
|
[41] |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[42] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[43] |
A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
CrossRef
ADS
Google scholar
|
[44] |
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
CrossRef
ADS
Google scholar
|
[45] |
N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90(1), 015001 (2018)
CrossRef
ADS
Google scholar
|
[46] |
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42(25), 1698 (1979)
CrossRef
ADS
Google scholar
|
[47] |
F. Song, S. Yao, and Z. Wang, Non-Hermitian topological invariants in real space, Phys. Rev. Lett. 123(24), 246801 (2019)
CrossRef
ADS
Google scholar
|
[48] |
W. Song, W. Sun, C. Chen, Q. Song, S. Xiao, S. Zhu, and T. Li, Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices, Phys. Rev. Lett. 123(16), 165701 (2019)
CrossRef
ADS
Google scholar
|
[49] |
Z. Xu, R. Zhang, S. Chen, L. Fu, and Y. Zhang, Fate of zero modes in a finite Su-Schrieffer-Heeger model with PT symmetry, Phys. Rev. A 101(1), 013635 (2020)
CrossRef
ADS
Google scholar
|
[50] |
T. Xiao, D. Xie, Z. Dong, T. Chen, W. Yi, and B. Yan, Observation of topological phase with critical localization in a quasi-periodic lattice, Sci. Bull. (Beijing) 66(21), 2175 (2021)
CrossRef
ADS
Google scholar
|
[51] |
E. Prodan, T. L. Hughes, and B. A. Bernevig, Entanglement spectrum of a disordered topological Chern insulator, Phys. Rev. Lett. 105(11), 115501 (2010)
CrossRef
ADS
Google scholar
|
[52] |
X. Cai, L. J. Lang, S. Chen, and Y. Wang, Topological superconductor to Anderson localization transition in one-dimensional incommensurate lattices, Phys. Rev. Lett. 110(17), 176403 (2013)
CrossRef
ADS
Google scholar
|
[53] |
J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states, Phys. Rev. Lett. 109(26), 267002 (2012)
CrossRef
ADS
Google scholar
|
[54] |
H. Pan and S. Das Sarma, Disorder effects on Majorana zero modes: Kitaev chain versus semiconductor nanowire, Phys. Rev. B 103(22), 224505 (2021)
CrossRef
ADS
Google scholar
|
[55] |
J. Li, R. L. Chu, J. K. Jain, and S. Q. Shen, Topological Anderson insulator, Phys. Rev. Lett. 102(13), 136806 (2009)
CrossRef
ADS
Google scholar
|
[56] |
H. M. Guo, G. Rosenberg, G. Refael, and M. Franz, Topological Anderson insulator in three dimensions, Phys. Rev. Lett. 105(21), 216601 (2010)
CrossRef
ADS
Google scholar
|
[57] |
Y. Y. Zhang, R. L. Chu, F. C. Zhang, and S. Q. Shen, Localization and mobility gap in the topological Anderson insulator, Phys. Rev. B 85(3), 035107 (2012)
CrossRef
ADS
Google scholar
|
[58] |
D. W. Zhang, L. Z. Tang, L. J. Lang, H. Yan, and S. L. Zhu, Non-Hermitian topological Anderson insulators, Sci. China Phys. Mech. Astron. 63(6), 267062 (2020)
CrossRef
ADS
Google scholar
|
[59] |
C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydlo, and C. W. J. Beenakker, Theory of the topological Anderson insulator, Phys. Rev. Lett. 103(19), 196805 (2009)
CrossRef
ADS
Google scholar
|
[60] |
A. Girschik, F. Libisch, and S. Rotter, Topological insulator in the presence of spatially correlated disorder, Phys. Rev. B 88(1), 014201 (2013)
CrossRef
ADS
Google scholar
|
[61] |
L. Z. Tang, S. N. Liu, G. Q. Zhang, and D. W. Zhang, Topological Anderson insulators with different bulk states in quasiperiodic chains, Phys. Rev. A 105(6), 063327 (2022)
CrossRef
ADS
Google scholar
|
[62] |
Y. P. Wu, L. Z. Tang, G. Q. Zhang, and D. W. Zhang, Quantized topological Anderson-Thouless pump, Phys. Rev. A 106(5), L051301 (2022)
CrossRef
ADS
Google scholar
|
[63] |
S. N. Liu, G. Q. Zhang, L. Z. Tang, and D. W. Zhang, Topological Anderson insulators induced by random binary disorders, Phys. Lett. A 431, 128004 (2022)
CrossRef
ADS
Google scholar
|
[64] |
J. Song, H. Liu, H. Jiang, Q. F. Sun, and X. C. Xie, Dependence of topological Anderson insulator on the type of disorder, Phys. Rev. B 85(19), 195125 (2012)
CrossRef
ADS
Google scholar
|
[65] |
I. Mondragon-Shem, T. L. Hughes, J. Song, and E. Prodan, Topological criticality in the chiral-symmetric AIII class at strong disorder, Phys. Rev. Lett. 113(4), 046802 (2014)
CrossRef
ADS
Google scholar
|
[66] |
Z. Q. Zhang, B. L. Wu, J. Song, and H. Jiang, Topological Anderson insulator in electric circuits, Phys. Rev. B 100(18), 184202 (2019)
CrossRef
ADS
Google scholar
|
[67] |
L. Z. Tang, L. F. Zhang, G. Q. Zhang, and D. W. Zhang, Topological Anderson insulators in two-dimensional non-Hermitian disordered systems, Phys. Rev. A 101(6), 063612 (2020)
CrossRef
ADS
Google scholar
|
[68] |
J. Borchmann, A. Farrell, and T. Pereg-Barnea, Anderson topological superconductor, Phys. Rev. B 93(12), 125133 (2016)
CrossRef
ADS
Google scholar
|
[69] |
C. B. Hua, R. Chen, D. H. Xu, and B. Zhou, Disorder-induced Majorana zero modes in a dimerized Kitaev superconductor chain, Phys. Rev. B 100(20), 205302 (2019)
CrossRef
ADS
Google scholar
|
[70] |
G. Q. Zhang, L. Z. Tang, L. F. Zhang, D. W. Zhang, and S. L. Zhu, Connecting topological Anderson and Mott insulators in disordered interacting fermionic systems, Phys. Rev. B 104(16), L161118 (2021)
CrossRef
ADS
Google scholar
|
[71] |
S. Velury, B. Bradlyn, and T. L. Hughes, Topological crystalline phases in a disordered inversion-symmetric chain, Phys. Rev. B 103(2), 024205 (2021)
CrossRef
ADS
Google scholar
|
[72] |
W. J. Zhang, Y. P. Wu, L. Z. Tang, and G. Q. Zhang, Topological and dynamical phase transitions in the Su–Schrieffer–Heeger model with quasiperiodic and long-range hoppings, Commum. Theor. Phys. 74(7), 075702 (2022)
CrossRef
ADS
Google scholar
|
[73] |
H. Jiang, L. Wang, Q. F. Sun, and X. C. Xie, Numerical study of the topological Anderson insulator in HgTe/CdTe quantum wells, Phys. Rev. B 80(16), 165316 (2009)
CrossRef
ADS
Google scholar
|
[74] |
S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman, and A. Szameit, Photonic topological Anderson insulators, Nature 560(7719), 461 (2018)
CrossRef
ADS
Google scholar
|
[75] |
G. G. Liu, Y. Yang, X. Ren, H. Xue, X. Lin, Y. H. Hu, H. X. Sun, B. Peng, P. Zhou, Y. Chong, and B. Zhang, Topological Anderson insulator in disordered photonic crystals, Phys. Rev. Lett. 125(13), 133603 (2020)
CrossRef
ADS
Google scholar
|
[76] |
E. J. Meier, F. A. An, A. Dauphin, M. Maffei, P. Massignan, T. L. Hughes, and B. Gadway, Observation of the topological Anderson insulator in disordered atomic wires, Science 362(6417), 929 (2018)
CrossRef
ADS
Google scholar
|
[77] |
S. Longhi, Topological Anderson phase in quasi-periodic waveguide lattices, Opt. Lett. 45(14), 4036 (2020)
CrossRef
ADS
Google scholar
|
[78] |
Z. Lu, Z. Xu, and Y. Zhang, Exact mobility edges and topological Anderson insulating phase in a slowly varying quasiperiodic model, Ann. Phys. 534(8), 2200203 (2022)
CrossRef
ADS
Google scholar
|
[79] |
Z. H. Wang, F. Xu, L. Li, D. H. Xu, and B. Wang, Topological superconductors and exact mobility edges in non-Hermitian quasicrystals, Phys. Rev. B 105(2), 024514 (2022)
CrossRef
ADS
Google scholar
|
[80] |
A. MacKinnon and B. Kramer, The scaling theory of electrons in disordered solids: Additional numerical results, Z. Phys. B 53(1), 1 (1983)
CrossRef
ADS
Google scholar
|
[81] |
Y. Wang, L. Zhang, S. Niu, D. Yu, and X. J. Liu, Realization and detection of nonergodic critical phases in an optical Raman lattice, Phys. Rev. Lett. 125(7), 073204 (2020)
CrossRef
ADS
Google scholar
|
[82] |
Y. C. Zhang, Y. Y. Zhang, Lyapunov exponent, and mobility edges, and critical region in the generalized Aubry−André model with an unbounded quasiperiodic potential, Phys. Rev. B 105(17), 174206 (2022)
CrossRef
ADS
Google scholar
|
[83] |
Y. Liu, Y. Wang, Z. Zheng, and S. Chen, Exact non-Hermitian mobility edges in one-dimensional quasicrystal lattice with exponentially decaying hopping and its dual lattice, Phys. Rev. B 103(13), 134208 (2021)
CrossRef
ADS
Google scholar
|
[84] |
X. Li and S. Das Sarma, Mobility edge and intermediate phase in one-dimensional incommensurate lattice potentials, Phys. Rev. B 101(6), 064203 (2020)
CrossRef
ADS
Google scholar
|
[85] |
J.K. AsbóthL.OroszlányA. Pályi, A Short Course on Topological Insulators: Band Structure and Edge States in One and Two Dimensions, Springer International Publishing, Switzerland, 2016
|
[86] |
H. P. Lüschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia, X. Li, S. Das Sarma, and I. Bloch, Single-particle mobility edge in a one-dimensional quasiperiodic optical lattice, Phys. Rev. Lett. 120(16), 160404 (2018)
CrossRef
ADS
Google scholar
|
[87] |
Z. Xu, H. Huangfu, Y. Zhang, and S. Chen, Dynamical observation of mobility edges in one-dimensional incommensurate optical lattices, New J. Phys. 22(1), 013036 (2020)
CrossRef
ADS
Google scholar
|
[88] |
H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77(3), 313 (1916)
CrossRef
ADS
Google scholar
|
[89] |
G. H. Choe, Ergodicity and irrational rotations, Proc. R. Ir. Acad. 93A, 193 (1993)
|
[90] |
A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2 (2006)
CrossRef
ADS
Google scholar
|
[91] |
L. Lin, Y. Ke, and C. Lee, Real-space representation of the winding number for a one-dimensional chiral-symmetric topological insulator, Phys. Rev. B 103(22), 224208 (2021)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |