Quantum teleportation and remote sensing through semiconductor quantum dots affected by pure dephasing

Seyed Mohammad Hosseiny, Jamileh Seyed-Yazdi, Milad Norouzi

PDF(3025 KB)
PDF(3025 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 024201. DOI: 10.15302/frontphys.2025.024201
RESEARCH ARTICLE

Quantum teleportation and remote sensing through semiconductor quantum dots affected by pure dephasing

Author information +
History +

Abstract

Quantum teleportation allows the transmission of quantum states over arbitrary distances and is an applied tool in quantum computation and communication. This paper theoretically addresses the feasibility of quantum teleportation based on a single semiconductor quantum dot influenced by pure dephasing through the biexciton cascade decay. We also investigate the idea of remote sensing in quantum teleportation affected by pure dephasing. In particular, we compare the quality of quantum teleportation in single- and two-qubit schemes and show that, within the present model, single-qubit quantum teleportation has a quantum advantage. Finally, to investigate the dynamics of the system, we introduce important witnesses of the non-Markovian dynamics of the system, so that our results may solve outstanding problems in the realization of faithful quantum teleportation over a long time.

Graphical abstract

Keywords

quantum teleportation / semiconductor quantum dots / quantum phase estimation / remote sensing

Cite this article

Download citation ▾
Seyed Mohammad Hosseiny, Jamileh Seyed-Yazdi, Milad Norouzi. Quantum teleportation and remote sensing through semiconductor quantum dots affected by pure dephasing. Front. Phys., 2025, 20(2): 024201 https://doi.org/10.15302/frontphys.2025.024201

References

[1]
M. L. Hu, Teleportation of the one-qubit state in decoherence environments, J. Phys. B: At. Mol. Opt. Phys. 44(2), 025502 (2011)
CrossRef ADS Google scholar
[2]
M. L. Hu, Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states, Quantum Inform. Process. 12(1), 229 (2013)
CrossRef ADS Google scholar
[3]
A. Kumar, S. Haddadi, M. R. Pourkarimi, B. K. Behera, and P. K. Panigrahi, Experimental realization of controlled quantum teleportation of arbitrary qubit states via cluster states, Sci. Rep. 10(1), 13608 (2020)
CrossRef ADS Google scholar
[4]
D. A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, and T. Heindel, Quantum communication using semiconductor quantum dots, Adv. Quantum Technol. 5(7), 2100116 (2022)
CrossRef ADS Google scholar
[5]
M.A. NielsenI.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2010
[6]
S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Advances in quantum cryptography, Adv. Opt. Photonics 12(4), 1012 (2020)
CrossRef ADS Google scholar
[7]
H. W. Wang, C. W. Tsai, J. Lin, Y. Y. Huang, and C. W. Yang, Efficient and secure measure-resend authenticated semi-quantum key distribution protocol against reflecting attack, Mathematics 10(8), 1241 (2022)
CrossRef ADS Google scholar
[8]
Y. Zhu, L. Mao, H. Hu, Y. Wang, and Y. Guo, Adaptive continuous-variable quantum key distribution with discrete modulation regulative in free space, Mathematics 10(23), 4450 (2022)
CrossRef ADS Google scholar
[9]
S. Haddadi, M. Hadipour, S. Haseli, A. U. Rahman, and A. Czerwinski, Quantum advantages of teleportation and dense coding protocols in an open system, Mathematics 11(6), 1407 (2023)
CrossRef ADS Google scholar
[10]
S. M. Hosseiny, Quantum dense coding and teleportation based on two coupled quantum dot molecules influenced by intrinsic decoherence, tunneling rates, and Coulomb coupling interaction, Appl. Phys. B 130(1), 8 (2024)
CrossRef ADS Google scholar
[11]
S. M. Hosseiny, Quantum teleportation and phase quantum estimation in a two-qubit state influenced by dipole and symmetric cross interactions, Phys. Scr. 98(11), 115101 (2023)
CrossRef ADS Google scholar
[12]
S. M. Hosseiny, J. Seyed-Yazdi, and M. Norouzi, Faithful quantum teleportation through common and independent qubit-noise configurations and multi-parameter estimation in the output of teleported state, AVS Quantum Science 6(1), 014405 (2024)
CrossRef ADS Google scholar
[13]
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein−Podolsky−Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[14]
D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein‒Podolsky‒Rosen channels, Phys. Rev. Lett. 80(6), 1121 (1998)
CrossRef ADS Google scholar
[15]
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
CrossRef ADS Google scholar
[16]
S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)
CrossRef ADS Google scholar
[17]
L. Ali, Rameez-ul-Islam Ikram, M. Abbas, and T. Ahmad, Teleportation of atomic external states on the internal degrees of freedom, Quantum Inform. Process. 21(2), 55 (2022)
CrossRef ADS Google scholar
[18]
N. Zidan, A. ur Rahman, and S. Haddadi, Quantum teleportation in a two-superconducting qubit system under dephasing noisy channel: Role of Josephson and mutual coupling energies, Laser Phys. Lett. 20(2), 025204 (2023)
CrossRef ADS Google scholar
[19]
H. R. Jahromi, Remote sensing and faithful quantum teleportation through non-localized qubits, Phys. Lett. A 424, 127850 (2022)
CrossRef ADS Google scholar
[20]
S. M. Hosseiny, J. Seyed-Yazdi, M. Norouzi, and P. Livreri, Quantum teleportation in Heisenberg chain with magnetic-field gradient under intrinsic decoherence, Sci. Rep. 14(1), 9607 (2024)
CrossRef ADS Google scholar
[21]
S. Salimian, M. Tavassoly, and M. Ghasemi, Multistage entanglement swapping using superconducting qubits in the absence and presence of dissipative environment without Bell state measurement, Sci. Rep. 13(1), 16342 (2023)
CrossRef ADS Google scholar
[22]
M. E. Kirdi, A. Slaoui, H. E. Hadfi, and M. Daoud, Improving the probabilistic quantum teleportation efficiency of arbitrary superposed coherent state using multipartite even and odd j-spin coherent states as resource, Appl. Phys. B 129(6), 94 (2023)
CrossRef ADS Google scholar
[23]
S. Salimian, M. Tavassoly, and N. Sehati, Quantum teleportation of the entangled superconducting qubits via LC resonators, Int. J. Theor. Phys. 62(4), 85 (2023)
CrossRef ADS Google scholar
[24]
F. Jahanbakhsh and M. Tavassoly, Teleportation of unknown states of a qubit and a single-mode field in strong coupling regime without Bell-state measurement, Commum. Theor. Phys. 75(2), 025103 (2023)
CrossRef ADS Google scholar
[25]
S. Salimian, M. Tavassoly, and N. Sehati, Teleportation of the entangled state of two superconducting qubits, Europhys. Lett. 138(5), 55004 (2022)
CrossRef ADS Google scholar
[26]
N. Zidan, Quantum teleportation via two-qubit Heisenberg XYZ chain, Can. J. Phys. 92(5), 406 (2014)
CrossRef ADS Google scholar
[27]
M. Otten, K. Kapoor, A. B. Özgüler, E. T. Holland, J. B. Kowalkowski, Y. Alexeev, and A. L. Lyon, Impacts of noise and structure on quantum information encoded in a quantum memory, Phys. Rev. A 104(1), 012605 (2021)
CrossRef ADS Google scholar
[28]
Y. Yao, X. Xiao, L. Ge, X. Wang, and C. Sun, Quantum Fisher information in noninertial frames, Phys. Rev. A 89(4), 042336 (2014)
CrossRef ADS Google scholar
[29]
A. Redwan, A. H. Abdel-Aty, N. Zidan, and T. El-Shahat, Dynamics of the entanglement and teleportation of thermal state of a spin chain with multiple interactions, Chaos 29(1), 013138 (2019)
CrossRef ADS Google scholar
[30]
C. W. Helstrom, Quantum detection and estimation theory, J. Stat. Phys. 1(2), 231 (1969)
CrossRef ADS Google scholar
[31]
M. G. Paris, Quantum estimation for quantum technology, Int. J. Quant. Inf. 7(supp01), 125 (2009)
CrossRef ADS Google scholar
[32]
U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)
CrossRef ADS Google scholar
[33]
H. Abdel-Hameed, N. Zidan, and N. Metwally, Quantum Fisher information of two superconducting charge qubits under dephasing noisy channel, Int. J. Mod. Phys. B 32(22), 1850245 (2018)
CrossRef ADS Google scholar
[34]
X.LuH.Lin, Unbiased quantum phase estimation, arXiv: 2210.00231 (2022)
[35]
J. Liu, H. Yuan, X. M. Lu, and X. Wang, Quantum Fisher information matrix and multiparameter estimation, J. Phys. A Math. Theor. 53(2), 023001 (2020)
CrossRef ADS Google scholar
[36]
M. Gessner and A. Smerzi, Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed, Phys. Rev. A 97(2), 022109 (2018)
CrossRef ADS Google scholar
[37]
H. R. Jahromi and R. L. Franco, Hilbert‒Schmidt speed as an efficient figure of merit for quantum estimation of phase encoded into the initial state of open n-qubit systems, Sci. Rep. 11, 7128 (2021)
CrossRef ADS Google scholar
[38]
H.P. BreuerF. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, USA, 2002
[39]
A.RivasS. F. Huelga, Open Quantum Systems, Vol. 10, Springer, 2012
[40]
X. Cai and Y. Zheng, Quantum dynamical speedup in a nonequilibrium environment, Phys. Rev. A 95(5), 052104 (2017)
CrossRef ADS Google scholar
[41]
X. Cai and Y. Zheng, Non-Markovian decoherence dynamics in nonequilibrium environments, J. Chem. Phys. 149, 094107 (2018)
CrossRef ADS Google scholar
[42]
X. Cai, Quantum dephasing induced by non-Markovian random telegraph noise, Sci. Rep. 10(1), 88 (2020)
CrossRef ADS Google scholar
[43]
A. Czerwinski, Quantum communication with polarization-encoded qubits under majorization monotone dynamics, Mathematics 10(21), 3932 (2022)
CrossRef ADS Google scholar
[44]
H. P. Breuer, E. M. Laine, and J. Piilo, Measure for the degree of non-Markovian behavior of quantum processes in open systems, Phys. Rev. Lett. 103(21), 210401 (2009)
CrossRef ADS Google scholar
[45]
H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini, Non-Markovian dynamics in open quantum systems, Rev. Mod. Phys. 88(2), 021002 (2016)
CrossRef ADS Google scholar
[46]
H.ChenT. HanM.ChenJ.RenX.Cai X.MengY. Peng, in: Photonics, Vol. 10, MDPI, 2023, p. 134
[47]
P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Measuring multipartite entanglement through dynamic susceptibilities, Nat. Phys. 12(8), 778 (2016)
CrossRef ADS Google scholar
[48]
V. Erol, F. Ozaydin, and A. A. Altintas, Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems, Sci. Rep. 4(1), 5422 (2014)
CrossRef ADS Google scholar
[49]
X. M. Lu, X. Wang, and C. Sun, Quantum Fisher information flow and non-Markovian processes of open systems, Phys. Rev. A 82(4), 042103 (2010)
CrossRef ADS Google scholar
[50]
B.E. Kane, A silicon-based nuclear spin quantum computer, Nature 393, 133 (1998)
[51]
W. Zhou and J. J. Coleman, Semiconductor quantum dots, Curr. Opin. Solid State Mater. Sci. 20(6), 352 (2016)
CrossRef ADS Google scholar
[52]
G. Pfanner, M. Seliger, and U. Hohenester, Entangled photon sources based on semiconductor quantum dots: The role of pure dephasing, Phys. Rev. B 78(19), 195410 (2008)
CrossRef ADS Google scholar
[53]
M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, Hidden symmetries in the energy levels of excitonic “artificial atoms”, Nature 405(6789), 923 (2000)
CrossRef ADS Google scholar
[54]
U. Leonhardt, Quantum physics of simple optical instruments, Rep. Prog. Phys. 66(7), 1207 (2003)
CrossRef ADS Google scholar
[55]
N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, Entangled photon pairs from semiconductor quantum dots, Phys. Rev. Lett. 96(13), 130501 (2006)
CrossRef ADS Google scholar
[56]
R.M. StevensonR.J. YoungP.Atkinson K.CooperD. A. RitchieA.J. Shields, A semiconductor source of triggered entangled photon pairs, Nature 439(7073), 179 (2006)
[57]
P.HarrisonA. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, John Wiley & Sons, 2016
[58]
D.BimbergM. GrundmannN.N. Ledentsov, Quantum Dot Heterostructures, John Wiley & Sons, 1999
[59]
B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, Optical schemes for quantum computation in quantum dot molecules, Phys. Rev. B 68(20), 205319 (2003)
CrossRef ADS Google scholar
[60]
F. Basso Basset, F. Salusti, L. Schweickert, M. B. Rota, D. Tedeschi, S. F. Covre da Silva, E. Roccia, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, Quantum teleportation with imperfect quantum dots, npj Quantum Inf. 7, 7 (2021)
CrossRef ADS Google scholar
[61]
C. Schimpf, M. Reindl, D. Huber, B. Lehner, S. F. Covre Da Silva, S. Manna, M. Vyvlecka, P. Walther, and A. Rastelli, Quantum cryptography with highly entangled photons from semiconductor quantum dots, Sci. Adv. 7(16), eabe8905 (2021)
CrossRef ADS Google scholar
[62]
L. Chotorlishvili, A. Gudyma, J. Wätzel, A. Ernst, and J. Berakdar, Spin−orbit-coupled quantum memory of a double quantum dot, Phys. Rev. B 100(17), 174413 (2019)
CrossRef ADS Google scholar
[63]
F. Basso Basset, M. Valeri, J. Neuwirth, E. Polino, M. B. Rota, D. Poderini, C. Pardo, G. Rodari, E. Roccia, S. F. Covre da Silva, G. Ronco, N. Spagnolo, A. Rastelli, G. Carvacho, F. Sciarrino, and R. Trotta, Daylight entanglement-based quantum key distribution with a quantum dot source, Quantum Sci. Technol. 8(2), 025002 (2023)
CrossRef ADS Google scholar
[64]
F. Fanchini, L. Castelano, and A. Caldeira, Entanglement versus quantum discord in two coupled double quantum dots, New J. Phys. 12(7), 073009 (2010)
CrossRef ADS Google scholar
[65]
P. Oliveira and L. Sanz, Bell states and entanglement dynamics on two coupled quantum molecules, Ann. Phys. 356, 244 (2015)
CrossRef ADS Google scholar
[66]
B. Szafran, Paired electron motion in interacting chains of quantum dots, Phys. Rev. B 101(7), 075306 (2020)
CrossRef ADS Google scholar
[67]
X. K. Qin, Decoherence of the hybrid qubit in a double quantum dot, Europhys. Lett. 114(3), 37006 (2016)
CrossRef ADS Google scholar
[68]
F. Souza, P. Oliveira, and L. Sanz, Quantum entanglement driven by electron-vibrational mode coupling, Phys. Rev. A 100(4), 042309 (2019)
CrossRef ADS Google scholar
[69]
F. de Pasquale, G. Giorgi, and S. Paganelli, Teleportation on a quantum dot array, Phys. Rev. Lett. 93(12), 120502 (2004)
CrossRef ADS Google scholar
[70]
D. D. B. Rao, S. Ghosh, and P. K. Panigrahi, Generation of entangled channels for perfect teleportation using multielectron quantum dots, Phys. Rev. A 78(2), 042328 (2008)
CrossRef ADS Google scholar
[71]
G. Bowen and S. Bose, Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity, Phys. Rev. Lett. 87(26), 267901 (2001)
CrossRef ADS Google scholar
[72]
M.NakaharaT. Ohmi, Quantum Computing: From Linear Algebra to Physical Realizations, CRC Press, 2008
[73]
J. Lee and M. Kim, Entanglement teleportation via Werner states, Phys. Rev. Lett. 84(18), 4236 (2000)
CrossRef ADS Google scholar
[74]
S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72(22), 3439 (1994)
CrossRef ADS Google scholar
[75]
S. A. Haine, Mean-field dynamics and Fisher information in matter wave interferometry, Phys. Rev. Lett. 116(23), 230404 (2016)
CrossRef ADS Google scholar
[76]
V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96(1), 010401 (2006)
CrossRef ADS Google scholar
[77]
H. R. Jahromi, K. Mahdavipour, M. K. Shadfar, and R. L. Franco, Witnessing non-Markovian effects of quantum processes through Hilbert−Schmidt speed, Phys. Rev. A 102(2), 022221 (2020)
CrossRef ADS Google scholar
[78]
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
CrossRef ADS Google scholar
[79]
S.PopescuD. Rohrlich, On the Measure of Entanglement for Pure States, Citeseer, 1997
[80]
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)
CrossRef ADS Google scholar
[81]
E. M. Laine, J. Piilo, and H. P. Breuer, Measure for the non-Markovianity of quantum processes, Phys. Rev. A 81(6), 062115 (2010)
CrossRef ADS Google scholar
[82]
I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89(1), 015001 (2017)
CrossRef ADS Google scholar
[83]
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Electrically driven single-photon source, Science 295(5552), 102 (2002)
CrossRef ADS Google scholar
[84]
G. Milburn, Intrinsic decoherence in quantum mechanics, Phys. Rev. A 44(9), 5401 (1991)
CrossRef ADS Google scholar
[85]
D. Walls and G. J. Milburn, in: Quantum Optics, Springer, 2008, pp 307–346
[86]
M. B. Plenio and P. L. Knight, The quantum-jump approach to dissipative dynamics in quantum optics, Rev. Mod. Phys. 70(1), 101 (1998)
CrossRef ADS Google scholar
[87]
S. Hesabi and D. Afshar, Non-Markovianity measure of Gaussian channels based on fidelity of teleportation, Phys. Lett. A 410, 127482 (2021)
CrossRef ADS Google scholar
[88]
H. Rangani Jahromi and R. Lo Franco, Searching for exceptional points and inspecting non-contractivity of trace distance in (anti-)PT-symmetric systems, Quantum Inform. Process. 21(4), 155 (2022)
CrossRef ADS Google scholar
[89]
P. Yin, Y. Takeuchi, W. H. Zhang, Z. Q. Yin, Y. Matsuzaki, X. X. Peng, X. Y. Xu, J. S. Xu, J. S. Tang, Z. Q. Zhou, G. Chen, C. F. Li, and G. C. Guo, Experimental demonstration of secure quantum remote sensing, Phys. Rev. Appl. 14(1), 014065 (2020)
CrossRef ADS Google scholar
[90]
C. T. Fancher, D. R. Scherer, M. C. S. John, and B. L. S. Marlow, Rydberg atom electric field sensors for communications and sensing, IEEE Transactions on Quantum Engineering 2, 1 (2021)
CrossRef ADS Google scholar
[91]
R. A. Bowell, M. J. Brandsema, B. M. Ahmed, R. M. Narayanan, S. W. Howell, and J. M. Dilger, in: Radar Sensor Technology XXIV, Vol. 11408, SPIE, 2020, pp 137–150
[92]
M. J. Brandsema, R. M. Narayanan, and M. Lanzagorta, in: Radar Sensor Technology XXIV, Vol. 11408, SPIE, 2020, pp 113–126
[93]
A. Sebastianelli, D. A. Zaidenberg, D. Spiller, B. Le Saux, and S. L. Ullo, On circuit-based hybrid quantum neural networks for remote sensing imagery classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15, 565 (2022)
CrossRef ADS Google scholar
[94]
G. Y. Slepyan, S. Vlasenko, and D. Mogilevtsev, Quantum antennas, Adv. Quantum Technol. 3(4), 1900120 (2020)
CrossRef ADS Google scholar
[95]
H. Okane, H. Hakoshima, Y. Takeuchi, Y. Seki, and Y. Matsuzaki, Quantum remote sensing under the effect of dephasing, Phys. Rev. A 104(6), 062610 (2021)
CrossRef ADS Google scholar
[96]
H. Rangani Jahromi and M. Amniat-Talab, Precision of estimation and entropy as witnesses of non-Markovianity in the presence of random classical noises, Ann. Phys. 360, 446 (2015)
CrossRef ADS Google scholar
[97]
P. J. Mohr and W. D. Phillips, Dimensionless units in the SI, Metrologia 52(1), 40 (2014)
CrossRef ADS Google scholar
[98]
S. M. Hosseiny, H. Rangani Jahromi, and M. Amniat-Talab, Monitoring variations of refractive index via Hilbert–Schmidt speed and applying this phenomenon to improve quantum metrology, J. Phys. B: At. Mol. Opt. Phys. 56, 175402 (2023)
CrossRef ADS Google scholar
[99]
D. Ellis, R. Stevenson, R. Young, A. Shields, P. Atkinson, and D. Ritchie, Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing, Appl. Phys. Lett. 90, 011907 (2007)
CrossRef ADS Google scholar
[100]
R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. Pohl, and D. Bimberg, Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots, Phys. Rev. Lett. 95(25), 257402 (2005)
CrossRef ADS Google scholar
[101]
A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, Coherence of an entangled exciton−photon state, Phys. Rev. Lett. 99(26), 266802 (2007)
CrossRef ADS Google scholar
[102]
U.HohenesterG.PfannerM.Seliger, Phonon-assisted decoherence in the production of polarization-entangled photons in a single semiconductor quantum dot, arXiv: 0706.4155 (2007)

Declarations

The authors declare no competing interests and no conflicts.

Author contributions

Practical research was conducted by S.M.H. and M.N. Interpretations and comparison of results and writing of the article were done by S.M.H. and M.N. with the help of J.S.Y. The article was reviewed and edited by J.S.Y.

Data availability statement

All data generated or analyzed during this study are included in this paper.

Acknowledgements

The authors would like to thank J. Teixeira for helping with the manuscript and valuable comments.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3025 KB)

Accesses

Citations

Detail

Sections
Recommended

/