Quantum teleportation and remote sensing through semiconductor quantum dots affected by pure dephasing
Seyed Mohammad Hosseiny, Jamileh Seyed-Yazdi, Milad Norouzi
Quantum teleportation and remote sensing through semiconductor quantum dots affected by pure dephasing
Quantum teleportation allows the transmission of quantum states over arbitrary distances and is an applied tool in quantum computation and communication. This paper theoretically addresses the feasibility of quantum teleportation based on a single semiconductor quantum dot influenced by pure dephasing through the biexciton cascade decay. We also investigate the idea of remote sensing in quantum teleportation affected by pure dephasing. In particular, we compare the quality of quantum teleportation in single- and two-qubit schemes and show that, within the present model, single-qubit quantum teleportation has a quantum advantage. Finally, to investigate the dynamics of the system, we introduce important witnesses of the non-Markovian dynamics of the system, so that our results may solve outstanding problems in the realization of faithful quantum teleportation over a long time.
quantum teleportation / semiconductor quantum dots / quantum phase estimation / remote sensing
[1] |
M. L. Hu, Teleportation of the one-qubit state in decoherence environments, J. Phys. B: At. Mol. Opt. Phys. 44(2), 025502 (2011)
CrossRef
ADS
Google scholar
|
[2] |
M. L. Hu, Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states, Quantum Inform. Process. 12(1), 229 (2013)
CrossRef
ADS
Google scholar
|
[3] |
A. Kumar, S. Haddadi, M. R. Pourkarimi, B. K. Behera, and P. K. Panigrahi, Experimental realization of controlled quantum teleportation of arbitrary qubit states via cluster states, Sci. Rep. 10(1), 13608 (2020)
CrossRef
ADS
Google scholar
|
[4] |
D. A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, and T. Heindel, Quantum communication using semiconductor quantum dots, Adv. Quantum Technol. 5(7), 2100116 (2022)
CrossRef
ADS
Google scholar
|
[5] |
M.A. NielsenI.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2010
|
[6] |
S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Advances in quantum cryptography, Adv. Opt. Photonics 12(4), 1012 (2020)
CrossRef
ADS
Google scholar
|
[7] |
H. W. Wang, C. W. Tsai, J. Lin, Y. Y. Huang, and C. W. Yang, Efficient and secure measure-resend authenticated semi-quantum key distribution protocol against reflecting attack, Mathematics 10(8), 1241 (2022)
CrossRef
ADS
Google scholar
|
[8] |
Y. Zhu, L. Mao, H. Hu, Y. Wang, and Y. Guo, Adaptive continuous-variable quantum key distribution with discrete modulation regulative in free space, Mathematics 10(23), 4450 (2022)
CrossRef
ADS
Google scholar
|
[9] |
S. Haddadi, M. Hadipour, S. Haseli, A. U. Rahman, and A. Czerwinski, Quantum advantages of teleportation and dense coding protocols in an open system, Mathematics 11(6), 1407 (2023)
CrossRef
ADS
Google scholar
|
[10] |
S. M. Hosseiny, Quantum dense coding and teleportation based on two coupled quantum dot molecules influenced by intrinsic decoherence, tunneling rates, and Coulomb coupling interaction, Appl. Phys. B 130(1), 8 (2024)
CrossRef
ADS
Google scholar
|
[11] |
S. M. Hosseiny, Quantum teleportation and phase quantum estimation in a two-qubit state influenced by dipole and symmetric cross interactions, Phys. Scr. 98(11), 115101 (2023)
CrossRef
ADS
Google scholar
|
[12] |
S. M. Hosseiny, J. Seyed-Yazdi, and M. Norouzi, Faithful quantum teleportation through common and independent qubit-noise configurations and multi-parameter estimation in the output of teleported state, AVS Quantum Science 6(1), 014405 (2024)
CrossRef
ADS
Google scholar
|
[13] |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein−Podolsky−Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[14] |
D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein‒Podolsky‒Rosen channels, Phys. Rev. Lett. 80(6), 1121 (1998)
CrossRef
ADS
Google scholar
|
[15] |
D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
CrossRef
ADS
Google scholar
|
[16] |
S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9(10), 641 (2015)
CrossRef
ADS
Google scholar
|
[17] |
L. Ali, Rameez-ul-Islam Ikram, M. Abbas, and T. Ahmad, Teleportation of atomic external states on the internal degrees of freedom, Quantum Inform. Process. 21(2), 55 (2022)
CrossRef
ADS
Google scholar
|
[18] |
N. Zidan, A. ur Rahman, and S. Haddadi, Quantum teleportation in a two-superconducting qubit system under dephasing noisy channel: Role of Josephson and mutual coupling energies, Laser Phys. Lett. 20(2), 025204 (2023)
CrossRef
ADS
Google scholar
|
[19] |
H. R. Jahromi, Remote sensing and faithful quantum teleportation through non-localized qubits, Phys. Lett. A 424, 127850 (2022)
CrossRef
ADS
Google scholar
|
[20] |
S. M. Hosseiny, J. Seyed-Yazdi, M. Norouzi, and P. Livreri, Quantum teleportation in Heisenberg chain with magnetic-field gradient under intrinsic decoherence, Sci. Rep. 14(1), 9607 (2024)
CrossRef
ADS
Google scholar
|
[21] |
S. Salimian, M. Tavassoly, and M. Ghasemi, Multistage entanglement swapping using superconducting qubits in the absence and presence of dissipative environment without Bell state measurement, Sci. Rep. 13(1), 16342 (2023)
CrossRef
ADS
Google scholar
|
[22] |
M. E. Kirdi, A. Slaoui, H. E. Hadfi, and M. Daoud, Improving the probabilistic quantum teleportation efficiency of arbitrary superposed coherent state using multipartite even and odd j-spin coherent states as resource, Appl. Phys. B 129(6), 94 (2023)
CrossRef
ADS
Google scholar
|
[23] |
S. Salimian, M. Tavassoly, and N. Sehati, Quantum teleportation of the entangled superconducting qubits via LC resonators, Int. J. Theor. Phys. 62(4), 85 (2023)
CrossRef
ADS
Google scholar
|
[24] |
F. Jahanbakhsh and M. Tavassoly, Teleportation of unknown states of a qubit and a single-mode field in strong coupling regime without Bell-state measurement, Commum. Theor. Phys. 75(2), 025103 (2023)
CrossRef
ADS
Google scholar
|
[25] |
S. Salimian, M. Tavassoly, and N. Sehati, Teleportation of the entangled state of two superconducting qubits, Europhys. Lett. 138(5), 55004 (2022)
CrossRef
ADS
Google scholar
|
[26] |
N. Zidan, Quantum teleportation via two-qubit Heisenberg XYZ chain, Can. J. Phys. 92(5), 406 (2014)
CrossRef
ADS
Google scholar
|
[27] |
M. Otten, K. Kapoor, A. B. Özgüler, E. T. Holland, J. B. Kowalkowski, Y. Alexeev, and A. L. Lyon, Impacts of noise and structure on quantum information encoded in a quantum memory, Phys. Rev. A 104(1), 012605 (2021)
CrossRef
ADS
Google scholar
|
[28] |
Y. Yao, X. Xiao, L. Ge, X. Wang, and C. Sun, Quantum Fisher information in noninertial frames, Phys. Rev. A 89(4), 042336 (2014)
CrossRef
ADS
Google scholar
|
[29] |
A. Redwan, A. H. Abdel-Aty, N. Zidan, and T. El-Shahat, Dynamics of the entanglement and teleportation of thermal state of a spin chain with multiple interactions, Chaos 29(1), 013138 (2019)
CrossRef
ADS
Google scholar
|
[30] |
C. W. Helstrom, Quantum detection and estimation theory, J. Stat. Phys. 1(2), 231 (1969)
CrossRef
ADS
Google scholar
|
[31] |
M. G. Paris, Quantum estimation for quantum technology, Int. J. Quant. Inf. 7(supp01), 125 (2009)
CrossRef
ADS
Google scholar
|
[32] |
U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Optimal quantum phase estimation, Phys. Rev. Lett. 102(4), 040403 (2009)
CrossRef
ADS
Google scholar
|
[33] |
H. Abdel-Hameed, N. Zidan, and N. Metwally, Quantum Fisher information of two superconducting charge qubits under dephasing noisy channel, Int. J. Mod. Phys. B 32(22), 1850245 (2018)
CrossRef
ADS
Google scholar
|
[34] |
X.LuH.Lin, Unbiased quantum phase estimation, arXiv: 2210.00231 (2022)
|
[35] |
J. Liu, H. Yuan, X. M. Lu, and X. Wang, Quantum Fisher information matrix and multiparameter estimation, J. Phys. A Math. Theor. 53(2), 023001 (2020)
CrossRef
ADS
Google scholar
|
[36] |
M. Gessner and A. Smerzi, Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed, Phys. Rev. A 97(2), 022109 (2018)
CrossRef
ADS
Google scholar
|
[37] |
H. R. Jahromi and R. L. Franco, Hilbert‒Schmidt speed as an efficient figure of merit for quantum estimation of phase encoded into the initial state of open n-qubit systems, Sci. Rep. 11, 7128 (2021)
CrossRef
ADS
Google scholar
|
[38] |
H.P. BreuerF. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, USA, 2002
|
[39] |
A.RivasS. F. Huelga, Open Quantum Systems, Vol. 10, Springer, 2012
|
[40] |
X. Cai and Y. Zheng, Quantum dynamical speedup in a nonequilibrium environment, Phys. Rev. A 95(5), 052104 (2017)
CrossRef
ADS
Google scholar
|
[41] |
X. Cai and Y. Zheng, Non-Markovian decoherence dynamics in nonequilibrium environments, J. Chem. Phys. 149, 094107 (2018)
CrossRef
ADS
Google scholar
|
[42] |
X. Cai, Quantum dephasing induced by non-Markovian random telegraph noise, Sci. Rep. 10(1), 88 (2020)
CrossRef
ADS
Google scholar
|
[43] |
A. Czerwinski, Quantum communication with polarization-encoded qubits under majorization monotone dynamics, Mathematics 10(21), 3932 (2022)
CrossRef
ADS
Google scholar
|
[44] |
H. P. Breuer, E. M. Laine, and J. Piilo, Measure for the degree of non-Markovian behavior of quantum processes in open systems, Phys. Rev. Lett. 103(21), 210401 (2009)
CrossRef
ADS
Google scholar
|
[45] |
H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini, Non-Markovian dynamics in open quantum systems, Rev. Mod. Phys. 88(2), 021002 (2016)
CrossRef
ADS
Google scholar
|
[46] |
H.ChenT. HanM.ChenJ.RenX.Cai X.MengY. Peng, in: Photonics, Vol. 10, MDPI, 2023, p. 134
|
[47] |
P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller, Measuring multipartite entanglement through dynamic susceptibilities, Nat. Phys. 12(8), 778 (2016)
CrossRef
ADS
Google scholar
|
[48] |
V. Erol, F. Ozaydin, and A. A. Altintas, Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems, Sci. Rep. 4(1), 5422 (2014)
CrossRef
ADS
Google scholar
|
[49] |
X. M. Lu, X. Wang, and C. Sun, Quantum Fisher information flow and non-Markovian processes of open systems, Phys. Rev. A 82(4), 042103 (2010)
CrossRef
ADS
Google scholar
|
[50] |
B.E. Kane, A silicon-based nuclear spin quantum computer, Nature 393, 133 (1998)
|
[51] |
W. Zhou and J. J. Coleman, Semiconductor quantum dots, Curr. Opin. Solid State Mater. Sci. 20(6), 352 (2016)
CrossRef
ADS
Google scholar
|
[52] |
G. Pfanner, M. Seliger, and U. Hohenester, Entangled photon sources based on semiconductor quantum dots: The role of pure dephasing, Phys. Rev. B 78(19), 195410 (2008)
CrossRef
ADS
Google scholar
|
[53] |
M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, Hidden symmetries in the energy levels of excitonic “artificial atoms”, Nature 405(6789), 923 (2000)
CrossRef
ADS
Google scholar
|
[54] |
U. Leonhardt, Quantum physics of simple optical instruments, Rep. Prog. Phys. 66(7), 1207 (2003)
CrossRef
ADS
Google scholar
|
[55] |
N. Akopian, N. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. Gerardot, and P. Petroff, Entangled photon pairs from semiconductor quantum dots, Phys. Rev. Lett. 96(13), 130501 (2006)
CrossRef
ADS
Google scholar
|
[56] |
R.M. StevensonR.J. YoungP.Atkinson K.CooperD. A. RitchieA.J. Shields, A semiconductor source of triggered entangled photon pairs, Nature 439(7073), 179 (2006)
|
[57] |
P.HarrisonA. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, John Wiley & Sons, 2016
|
[58] |
D.BimbergM. GrundmannN.N. Ledentsov, Quantum Dot Heterostructures, John Wiley & Sons, 1999
|
[59] |
B. W. Lovett, J. H. Reina, A. Nazir, and G. A. D. Briggs, Optical schemes for quantum computation in quantum dot molecules, Phys. Rev. B 68(20), 205319 (2003)
CrossRef
ADS
Google scholar
|
[60] |
F. Basso Basset, F. Salusti, L. Schweickert, M. B. Rota, D. Tedeschi, S. F. Covre da Silva, E. Roccia, V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, Quantum teleportation with imperfect quantum dots, npj Quantum Inf. 7, 7 (2021)
CrossRef
ADS
Google scholar
|
[61] |
C. Schimpf, M. Reindl, D. Huber, B. Lehner, S. F. Covre Da Silva, S. Manna, M. Vyvlecka, P. Walther, and A. Rastelli, Quantum cryptography with highly entangled photons from semiconductor quantum dots, Sci. Adv. 7(16), eabe8905 (2021)
CrossRef
ADS
Google scholar
|
[62] |
L. Chotorlishvili, A. Gudyma, J. Wätzel, A. Ernst, and J. Berakdar, Spin−orbit-coupled quantum memory of a double quantum dot, Phys. Rev. B 100(17), 174413 (2019)
CrossRef
ADS
Google scholar
|
[63] |
F. Basso Basset, M. Valeri, J. Neuwirth, E. Polino, M. B. Rota, D. Poderini, C. Pardo, G. Rodari, E. Roccia, S. F. Covre da Silva, G. Ronco, N. Spagnolo, A. Rastelli, G. Carvacho, F. Sciarrino, and R. Trotta, Daylight entanglement-based quantum key distribution with a quantum dot source, Quantum Sci. Technol. 8(2), 025002 (2023)
CrossRef
ADS
Google scholar
|
[64] |
F. Fanchini, L. Castelano, and A. Caldeira, Entanglement versus quantum discord in two coupled double quantum dots, New J. Phys. 12(7), 073009 (2010)
CrossRef
ADS
Google scholar
|
[65] |
P. Oliveira and L. Sanz, Bell states and entanglement dynamics on two coupled quantum molecules, Ann. Phys. 356, 244 (2015)
CrossRef
ADS
Google scholar
|
[66] |
B. Szafran, Paired electron motion in interacting chains of quantum dots, Phys. Rev. B 101(7), 075306 (2020)
CrossRef
ADS
Google scholar
|
[67] |
X. K. Qin, Decoherence of the hybrid qubit in a double quantum dot, Europhys. Lett. 114(3), 37006 (2016)
CrossRef
ADS
Google scholar
|
[68] |
F. Souza, P. Oliveira, and L. Sanz, Quantum entanglement driven by electron-vibrational mode coupling, Phys. Rev. A 100(4), 042309 (2019)
CrossRef
ADS
Google scholar
|
[69] |
F. de Pasquale, G. Giorgi, and S. Paganelli, Teleportation on a quantum dot array, Phys. Rev. Lett. 93(12), 120502 (2004)
CrossRef
ADS
Google scholar
|
[70] |
D. D. B. Rao, S. Ghosh, and P. K. Panigrahi, Generation of entangled channels for perfect teleportation using multielectron quantum dots, Phys. Rev. A 78(2), 042328 (2008)
CrossRef
ADS
Google scholar
|
[71] |
G. Bowen and S. Bose, Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity, Phys. Rev. Lett. 87(26), 267901 (2001)
CrossRef
ADS
Google scholar
|
[72] |
M.NakaharaT. Ohmi, Quantum Computing: From Linear Algebra to Physical Realizations, CRC Press, 2008
|
[73] |
J. Lee and M. Kim, Entanglement teleportation via Werner states, Phys. Rev. Lett. 84(18), 4236 (2000)
CrossRef
ADS
Google scholar
|
[74] |
S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72(22), 3439 (1994)
CrossRef
ADS
Google scholar
|
[75] |
S. A. Haine, Mean-field dynamics and Fisher information in matter wave interferometry, Phys. Rev. Lett. 116(23), 230404 (2016)
CrossRef
ADS
Google scholar
|
[76] |
V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96(1), 010401 (2006)
CrossRef
ADS
Google scholar
|
[77] |
H. R. Jahromi, K. Mahdavipour, M. K. Shadfar, and R. L. Franco, Witnessing non-Markovian effects of quantum processes through Hilbert−Schmidt speed, Phys. Rev. A 102(2), 022221 (2020)
CrossRef
ADS
Google scholar
|
[78] |
W. K. Wootters, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80(10), 2245 (1998)
CrossRef
ADS
Google scholar
|
[79] |
S.PopescuD. Rohrlich, On the Measure of Entanglement for Pure States, Citeseer, 1997
|
[80] |
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)
CrossRef
ADS
Google scholar
|
[81] |
E. M. Laine, J. Piilo, and H. P. Breuer, Measure for the non-Markovianity of quantum processes, Phys. Rev. A 81(6), 062115 (2010)
CrossRef
ADS
Google scholar
|
[82] |
I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89(1), 015001 (2017)
CrossRef
ADS
Google scholar
|
[83] |
Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Electrically driven single-photon source, Science 295(5552), 102 (2002)
CrossRef
ADS
Google scholar
|
[84] |
G. Milburn, Intrinsic decoherence in quantum mechanics, Phys. Rev. A 44(9), 5401 (1991)
CrossRef
ADS
Google scholar
|
[85] |
D
|
[86] |
M. B. Plenio and P. L. Knight, The quantum-jump approach to dissipative dynamics in quantum optics, Rev. Mod. Phys. 70(1), 101 (1998)
CrossRef
ADS
Google scholar
|
[87] |
S. Hesabi and D. Afshar, Non-Markovianity measure of Gaussian channels based on fidelity of teleportation, Phys. Lett. A 410, 127482 (2021)
CrossRef
ADS
Google scholar
|
[88] |
H. Rangani Jahromi and R. Lo Franco, Searching for exceptional points and inspecting non-contractivity of trace distance in (anti-)PT-symmetric systems, Quantum Inform. Process. 21(4), 155 (2022)
CrossRef
ADS
Google scholar
|
[89] |
P. Yin, Y. Takeuchi, W. H. Zhang, Z. Q. Yin, Y. Matsuzaki, X. X. Peng, X. Y. Xu, J. S. Xu, J. S. Tang, Z. Q. Zhou, G. Chen, C. F. Li, and G. C. Guo, Experimental demonstration of secure quantum remote sensing, Phys. Rev. Appl. 14(1), 014065 (2020)
CrossRef
ADS
Google scholar
|
[90] |
C. T. Fancher, D. R. Scherer, M. C. S. John, and B. L. S. Marlow, Rydberg atom electric field sensors for communications and sensing, IEEE Transactions on Quantum Engineering 2, 1 (2021)
CrossRef
ADS
Google scholar
|
[91] |
R
|
[92] |
M
|
[93] |
A. Sebastianelli, D. A. Zaidenberg, D. Spiller, B. Le Saux, and S. L. Ullo, On circuit-based hybrid quantum neural networks for remote sensing imagery classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15, 565 (2022)
CrossRef
ADS
Google scholar
|
[94] |
G. Y. Slepyan, S. Vlasenko, and D. Mogilevtsev, Quantum antennas, Adv. Quantum Technol. 3(4), 1900120 (2020)
CrossRef
ADS
Google scholar
|
[95] |
H. Okane, H. Hakoshima, Y. Takeuchi, Y. Seki, and Y. Matsuzaki, Quantum remote sensing under the effect of dephasing, Phys. Rev. A 104(6), 062610 (2021)
CrossRef
ADS
Google scholar
|
[96] |
H. Rangani Jahromi and M. Amniat-Talab, Precision of estimation and entropy as witnesses of non-Markovianity in the presence of random classical noises, Ann. Phys. 360, 446 (2015)
CrossRef
ADS
Google scholar
|
[97] |
P. J. Mohr and W. D. Phillips, Dimensionless units in the SI, Metrologia 52(1), 40 (2014)
CrossRef
ADS
Google scholar
|
[98] |
S. M. Hosseiny, H. Rangani Jahromi, and M. Amniat-Talab, Monitoring variations of refractive index via Hilbert–Schmidt speed and applying this phenomenon to improve quantum metrology, J. Phys. B: At. Mol. Opt. Phys. 56, 175402 (2023)
CrossRef
ADS
Google scholar
|
[99] |
D. Ellis, R. Stevenson, R. Young, A. Shields, P. Atkinson, and D. Ritchie, Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing, Appl. Phys. Lett. 90, 011907 (2007)
CrossRef
ADS
Google scholar
|
[100] |
R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. Pohl, and D. Bimberg, Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots, Phys. Rev. Lett. 95(25), 257402 (2005)
CrossRef
ADS
Google scholar
|
[101] |
A. J. Hudson, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, Coherence of an entangled exciton−photon state, Phys. Rev. Lett. 99(26), 266802 (2007)
CrossRef
ADS
Google scholar
|
[102] |
U.HohenesterG.PfannerM.Seliger, Phonon-assisted decoherence in the production of polarization-entangled photons in a single semiconductor quantum dot, arXiv: 0706.4155 (2007)
|
/
〈 | 〉 |