Entanglement signature of the superradiant quantum phase transition
Arthur Vesperini, Matteo Cini, Roberto Franzosi
Entanglement signature of the superradiant quantum phase transition
Entanglement and quantum correlations between atoms are not usually considered key ingredients of the superradiant phase transition. Here we consider the Tavis−Cummings model, a solvable system of two-levels atoms, coupled with a single-mode quantized electromagnetic field. This system undergoes a superradiant phase transition, even in a finite-size framework, accompanied by a spontaneous symmetry breaking, and an infinite sequence of energy level crossings. We find approximated expressions for the ground state, its energy, and the position of the level crossings, valid in the limit of a very large number of photons with respect to that of the atoms. In that same limit, we find that the number of photons scales quadratically with the coupling strength, and linearly with the system size, providing a new insight into the superradiance phenomenon. Resorting to novel multipartite measures, we then demonstrate that this quantum phase transition is accompanied by a crossover in the quantum correlations and entanglement between the atoms (qubits). The latters therefore represent suited order parameters for this transition. Finally, we show that these properties of the quantum phase transition persist in the thermodynamic limit.
entanglement / superradiant quantum phase transition
[1] |
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
CrossRef
ADS
Google scholar
|
[2] |
J. P. Dowling and G. J. Milburn, Quantum technology: The second quantum revolution, Philos. T. R. Soc. A 361(1809), 1655 (2003)
CrossRef
ADS
Google scholar
|
[3] |
O. Gühne and G. Toth, Entanglement detection, Phys. Rep. 474(1−6), 1 (2009)
CrossRef
ADS
Google scholar
|
[4] |
J. Y. Gyhm, D. Šafránek, and D. Rosa, Quantum charging advantage cannot be extensive without global operations, Phys. Rev. Lett. 128(14), 140501 (2022)
CrossRef
ADS
Google scholar
|
[5] |
R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E 87(4), 042123 (2013)
CrossRef
ADS
Google scholar
|
[6] |
F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quantacell: Powerful charging of quantum batteries, New J. Phys. 17(7), 075015 (2015)
CrossRef
ADS
Google scholar
|
[7] |
F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, and K. Modi, Enhancing the charging power of quantum batteries, Phys. Rev. Lett. 118(15), 150601 (2017)
CrossRef
ADS
Google scholar
|
[8] |
J. Y. Gyhm, D. Šafránek, and D. Rosa, Quantum charging advantage cannot be extensive without global operations, Phys. Rev. Lett. 128(14), 140501 (2022)
CrossRef
ADS
Google scholar
|
[9] |
M. J. Hwang, R. Puebla, and M. B. Plenio, Quantum phase transition and universal dynamics in the Rabi model, Phys. Rev. Lett. 115(18), 180404 (2015)
CrossRef
ADS
Google scholar
|
[10] |
I. I. Rabi, On the process of space quantization, Phys. Rev. 49(4), 324 (1936)
CrossRef
ADS
Google scholar
|
[11] |
D. Braak, Integrability of the Rabi model, Phys. Rev. Lett. 107(10), 100401 (2011)
CrossRef
ADS
Google scholar
|
[12] |
E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51(1), 89 (1963)
CrossRef
ADS
Google scholar
|
[13] |
A. Retzker, E. Solano, and B. Reznik, Tavis−Cummings model and collective multiqubit entanglement in trapped ions, Phys. Rev. A 75(2), 022312 (2007)
CrossRef
ADS
Google scholar
|
[14] |
M. Feng, Y. P. Zhong, T. Liu, L. L. Yan, W. L. Yang, J. Twamley, and H. Wang, Exploring the quantum critical behaviour in a driven Tavis–Cummings circuit, Nat. Commun. 6(1), 7111 (2015)
CrossRef
ADS
Google scholar
|
[15] |
J. Larson, Dynamics of the Jaynes–Cummings and Rabi models: Old wine in new bottles, Phys. Scr. 76(2), 146 (2007)
CrossRef
ADS
Google scholar
|
[16] |
A. Ghoshal, S. Das, A. Sen(De), and U. Sen, Population inversion and entanglement in single and double glassy Jaynes−Cummings models, Phys. Rev. A 101(5), 053805 (2020)
CrossRef
ADS
Google scholar
|
[17] |
J. F. Huang, J. Q. Liao, and L. M. Kuang, Ultrastrong Jaynes−Cummings model, Phys. Rev. A 101(4), 043835 (2020)
CrossRef
ADS
Google scholar
|
[18] |
K. Fischer, S. Sun, D. Lukin, Y. Kelaita, R. Trivedi, and J. Vuckovic, Pulsed coherent drive in the Jaynes−Cummings model, Phys. Rev. A 98(2), 021802 (2018)
CrossRef
ADS
Google scholar
|
[19] |
M. J. Hwang and M. B. Plenio, Quantum phase transition in the finite Jaynes−Cummings lattice systems, Phys. Rev. Lett. 117(12), 123602 (2016)
CrossRef
ADS
Google scholar
|
[20] |
V. Bužek, M. Orszag, and M. Roško, Instability and entanglement of the ground state of the Dicke model, Phys. Rev. Lett. 94(16), 163601 (2005)
CrossRef
ADS
Google scholar
|
[21] |
O. Castaños, R. López-Peña, E. Nahmad-Achar, J. G. Hirsch, E. López-Moreno, and J. E. Vitela, Coherent state description of the ground state in the Tavis–Cummings model and its quantum phase transitions, Phys. Scr. 79(6), 065405 (2009)
CrossRef
ADS
Google scholar
|
[22] |
C.DongY. Zhang, Entanglement of atoms in Tavis−Cummings model, J. Shanghai University 10(3), 215 (2006) (English Edition)
|
[23] |
T. E. Tessier, I. H. Deutsch, A. Delgado, and I. Fuentes-Guridi, Entanglement sharing in the two-atom Tavis−Cummings model, Phys. Rev. A 68(6), 062316 (2003)
CrossRef
ADS
Google scholar
|
[24] |
M. Youssef, N. Metwally, and A. S. F. Obada, Some entanglement features of a three-atom Tavis–Cummings model: A cooperative case, J. Phys. At. Mol. Opt. Phys. 43(9), 095501 (2010)
CrossRef
ADS
Google scholar
|
[25] |
A. Vesperini, G. Bel-Hadj-Aissa, and R. Franzosi, Entanglement and quantum correlation measures for quantum multipartite mixed states, Sci. Rep. 13(1), 2852 (2023)
CrossRef
ADS
Google scholar
|
[26] |
V. Roopini and R. Radhakrishnan, Implementation of Tavis−Cummings model in solid-state defect qubits: Diamond nitrogenvacancy center, Mater. Today Proc. 27, 446 (2020)
CrossRef
ADS
Google scholar
|
[27] |
S. Scali and R. Franzosi, Entanglement estimation in non-optimal qubit states, Ann. Phys. 411, 167995 (2019)
CrossRef
ADS
Google scholar
|
[28] |
D. Cocchiarella, S. Scali, S. Ribisi, B. Nardi, G. Bel-Hadj-Aissa, and R. Franzosi, Entanglement distance for arbitrary m-qudit hybrid systems, Phys. Rev. A 101(4), 042129 (2020)
CrossRef
ADS
Google scholar
|
[29] |
A. Nourmandipour, A. Vafafard, A. Mortezapour, and R. Franzosi, Entanglement protection of classically driven qubits in a lossy cavity, Sci. Rep. 11(1), 16259 (2021)
CrossRef
ADS
Google scholar
|
[30] |
A. Vafafard, A. Nourmandipour, and R. Franzosi, Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity, Phys. Rev. A 105(5), 052439 (2022)
CrossRef
ADS
Google scholar
|
[31] |
V.Arthur, Geometry, Topology, and Dynamics of Many-Body Systems: Quantum and Classical Perspectives, PhD thesis, U. Siena, Aix-Marseille University, 2023
|
[32] |
T. J. Osborne and F. Verstraete, General monogamy inequality for bipartite qubit entanglement, Phys. Rev. Lett. 96(22), 220503 (2006)
CrossRef
ADS
Google scholar
|
[33] |
G.Bel-Hadj-Aissa, Geometric study of classical phase transitions and quantum entanglement, PhD thesis, U. Siena, 2023
|
[34] |
A. Vesperini, G. Bel-Hadj-Aissa, L. Capra, and R. Franzosi, Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems, Front. Phys. 19(5), 51204 (2024)
CrossRef
ADS
Google scholar
|
[35] |
M. Ozawa, Entanglement measures and the Hilbert−Schmidt distance, Phys. Lett. A 268(3), 158 (2000)
CrossRef
ADS
Google scholar
|
[36] |
M. Piani, Problem with geometric discord, Phys. Rev. A 86(3), 034101 (2012)
CrossRef
ADS
Google scholar
|
[37] |
L. Chang and S. Luo, Remedying the local Ancilla problem with geometric discord, Phys. Rev. A 87(6), 062303 (2013)
CrossRef
ADS
Google scholar
|
[38] |
G. Vidal, Entanglement monotones, J. Mod. Opt. 47(2−3), 355 (2000)
CrossRef
ADS
Google scholar
|
[39] |
M. Tavis and F. W. Cummings, Exact solution for an n-molecule — radiation-field hamiltonian, Phys. Rev. 170(2), 379 (1968)
CrossRef
ADS
Google scholar
|
[40] |
I. D. Leroux, M. H. Schleier-Smith, and V. Vuletic, Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett. 104(7), 073602 (2010)
CrossRef
ADS
Google scholar
|
[41] |
N. Yu, Separability of a mixture of Dicke states, Phys. Rev. A 94(6), 060101 (2016)
CrossRef
ADS
Google scholar
|
[42] |
V. Bužek, M. Orszag, and M. Roško, Instability and entanglement of the ground state of the Dicke model, Phys. Rev. Lett. 94(16), 163601 (2005)
CrossRef
ADS
Google scholar
|
[43] |
V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61(5), 052306 (2000)
CrossRef
ADS
Google scholar
|
[44] |
M. Koashi, V. Bužek, and N. Imoto, Entangled webs: Tight bound for symmetric sharing of entanglement, Phys. Rev. A 62(5), 050302 (2000)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |