Entanglement signature of the superradiant quantum phase transition

Arthur Vesperini, Matteo Cini, Roberto Franzosi

PDF(5863 KB)
PDF(5863 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 023303. DOI: 10.15302/frontphys.2025.023303
RESEARCH ARTICLE

Entanglement signature of the superradiant quantum phase transition

Author information +
History +

Abstract

Entanglement and quantum correlations between atoms are not usually considered key ingredients of the superradiant phase transition. Here we consider the Tavis−Cummings model, a solvable system of two-levels atoms, coupled with a single-mode quantized electromagnetic field. This system undergoes a superradiant phase transition, even in a finite-size framework, accompanied by a spontaneous symmetry breaking, and an infinite sequence of energy level crossings. We find approximated expressions for the ground state, its energy, and the position of the level crossings, valid in the limit of a very large number of photons with respect to that of the atoms. In that same limit, we find that the number of photons scales quadratically with the coupling strength, and linearly with the system size, providing a new insight into the superradiance phenomenon. Resorting to novel multipartite measures, we then demonstrate that this quantum phase transition is accompanied by a crossover in the quantum correlations and entanglement between the atoms (qubits). The latters therefore represent suited order parameters for this transition. Finally, we show that these properties of the quantum phase transition persist in the thermodynamic limit.

Graphical abstract

Keywords

entanglement / superradiant quantum phase transition

Cite this article

Download citation ▾
Arthur Vesperini, Matteo Cini, Roberto Franzosi. Entanglement signature of the superradiant quantum phase transition. Front. Phys., 2025, 20(2): 023303 https://doi.org/10.15302/frontphys.2025.023303

References

[1]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, . Quantum supremacy using a programmable superconducting processor, Nature 574(7779), 505 (2019)
CrossRef ADS Google scholar
[2]
J. P. Dowling and G. J. Milburn, Quantum technology: The second quantum revolution, Philos. T. R. Soc. A 361(1809), 1655 (2003)
CrossRef ADS Google scholar
[3]
O. Gühne and G. Toth, Entanglement detection, Phys. Rep. 474(1−6), 1 (2009)
CrossRef ADS Google scholar
[4]
J. Y. Gyhm, D. Šafránek, and D. Rosa, Quantum charging advantage cannot be extensive without global operations, Phys. Rev. Lett. 128(14), 140501 (2022)
CrossRef ADS Google scholar
[5]
R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E 87(4), 042123 (2013)
CrossRef ADS Google scholar
[6]
F. C. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quantacell: Powerful charging of quantum batteries, New J. Phys. 17(7), 075015 (2015)
CrossRef ADS Google scholar
[7]
F. Campaioli, F. A. Pollock, F. C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, and K. Modi, Enhancing the charging power of quantum batteries, Phys. Rev. Lett. 118(15), 150601 (2017)
CrossRef ADS Google scholar
[8]
J. Y. Gyhm, D. Šafránek, and D. Rosa, Quantum charging advantage cannot be extensive without global operations, Phys. Rev. Lett. 128(14), 140501 (2022)
CrossRef ADS Google scholar
[9]
M. J. Hwang, R. Puebla, and M. B. Plenio, Quantum phase transition and universal dynamics in the Rabi model, Phys. Rev. Lett. 115(18), 180404 (2015)
CrossRef ADS Google scholar
[10]
I. I. Rabi, On the process of space quantization, Phys. Rev. 49(4), 324 (1936)
CrossRef ADS Google scholar
[11]
D. Braak, Integrability of the Rabi model, Phys. Rev. Lett. 107(10), 100401 (2011)
CrossRef ADS Google scholar
[12]
E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51(1), 89 (1963)
CrossRef ADS Google scholar
[13]
A. Retzker, E. Solano, and B. Reznik, Tavis−Cummings model and collective multiqubit entanglement in trapped ions, Phys. Rev. A 75(2), 022312 (2007)
CrossRef ADS Google scholar
[14]
M. Feng, Y. P. Zhong, T. Liu, L. L. Yan, W. L. Yang, J. Twamley, and H. Wang, Exploring the quantum critical behaviour in a driven Tavis–Cummings circuit, Nat. Commun. 6(1), 7111 (2015)
CrossRef ADS Google scholar
[15]
J. Larson, Dynamics of the Jaynes–Cummings and Rabi models: Old wine in new bottles, Phys. Scr. 76(2), 146 (2007)
CrossRef ADS Google scholar
[16]
A. Ghoshal, S. Das, A. Sen(De), and U. Sen, Population inversion and entanglement in single and double glassy Jaynes−Cummings models, Phys. Rev. A 101(5), 053805 (2020)
CrossRef ADS Google scholar
[17]
J. F. Huang, J. Q. Liao, and L. M. Kuang, Ultrastrong Jaynes−Cummings model, Phys. Rev. A 101(4), 043835 (2020)
CrossRef ADS Google scholar
[18]
K. Fischer, S. Sun, D. Lukin, Y. Kelaita, R. Trivedi, and J. Vuckovic, Pulsed coherent drive in the Jaynes−Cummings model, Phys. Rev. A 98(2), 021802 (2018)
CrossRef ADS Google scholar
[19]
M. J. Hwang and M. B. Plenio, Quantum phase transition in the finite Jaynes−Cummings lattice systems, Phys. Rev. Lett. 117(12), 123602 (2016)
CrossRef ADS Google scholar
[20]
V. Bužek, M. Orszag, and M. Roško, Instability and entanglement of the ground state of the Dicke model, Phys. Rev. Lett. 94(16), 163601 (2005)
CrossRef ADS Google scholar
[21]
O. Castaños, R. López-Peña, E. Nahmad-Achar, J. G. Hirsch, E. López-Moreno, and J. E. Vitela, Coherent state description of the ground state in the Tavis–Cummings model and its quantum phase transitions, Phys. Scr. 79(6), 065405 (2009)
CrossRef ADS Google scholar
[22]
C.DongY. Zhang, Entanglement of atoms in Tavis−Cummings model, J. Shanghai University 10(3), 215 (2006) (English Edition)
[23]
T. E. Tessier, I. H. Deutsch, A. Delgado, and I. Fuentes-Guridi, Entanglement sharing in the two-atom Tavis−Cummings model, Phys. Rev. A 68(6), 062316 (2003)
CrossRef ADS Google scholar
[24]
M. Youssef, N. Metwally, and A. S. F. Obada, Some entanglement features of a three-atom Tavis–Cummings model: A cooperative case, J. Phys. At. Mol. Opt. Phys. 43(9), 095501 (2010)
CrossRef ADS Google scholar
[25]
A. Vesperini, G. Bel-Hadj-Aissa, and R. Franzosi, Entanglement and quantum correlation measures for quantum multipartite mixed states, Sci. Rep. 13(1), 2852 (2023)
CrossRef ADS Google scholar
[26]
V. Roopini and R. Radhakrishnan, Implementation of Tavis−Cummings model in solid-state defect qubits: Diamond nitrogenvacancy center, Mater. Today Proc. 27, 446 (2020)
CrossRef ADS Google scholar
[27]
S. Scali and R. Franzosi, Entanglement estimation in non-optimal qubit states, Ann. Phys. 411, 167995 (2019)
CrossRef ADS Google scholar
[28]
D. Cocchiarella, S. Scali, S. Ribisi, B. Nardi, G. Bel-Hadj-Aissa, and R. Franzosi, Entanglement distance for arbitrary m-qudit hybrid systems, Phys. Rev. A 101(4), 042129 (2020)
CrossRef ADS Google scholar
[29]
A. Nourmandipour, A. Vafafard, A. Mortezapour, and R. Franzosi, Entanglement protection of classically driven qubits in a lossy cavity, Sci. Rep. 11(1), 16259 (2021)
CrossRef ADS Google scholar
[30]
A. Vafafard, A. Nourmandipour, and R. Franzosi, Multipartite stationary entanglement generation in the presence of dipole−dipole interaction in an optical cavity, Phys. Rev. A 105(5), 052439 (2022)
CrossRef ADS Google scholar
[31]
V.Arthur, Geometry, Topology, and Dynamics of Many-Body Systems: Quantum and Classical Perspectives, PhD thesis, U. Siena, Aix-Marseille University, 2023
[32]
T. J. Osborne and F. Verstraete, General monogamy inequality for bipartite qubit entanglement, Phys. Rev. Lett. 96(22), 220503 (2006)
CrossRef ADS Google scholar
[33]
G.Bel-Hadj-Aissa, Geometric study of classical phase transitions and quantum entanglement, PhD thesis, U. Siena, 2023
[34]
A. Vesperini, G. Bel-Hadj-Aissa, L. Capra, and R. Franzosi, Unveiling the geometric meaning of quantum entanglement: Discrete and continuous variable systems, Front. Phys. 19(5), 51204 (2024)
CrossRef ADS Google scholar
[35]
M. Ozawa, Entanglement measures and the Hilbert−Schmidt distance, Phys. Lett. A 268(3), 158 (2000)
CrossRef ADS Google scholar
[36]
M. Piani, Problem with geometric discord, Phys. Rev. A 86(3), 034101 (2012)
CrossRef ADS Google scholar
[37]
L. Chang and S. Luo, Remedying the local Ancilla problem with geometric discord, Phys. Rev. A 87(6), 062303 (2013)
CrossRef ADS Google scholar
[38]
G. Vidal, Entanglement monotones, J. Mod. Opt. 47(2−3), 355 (2000)
CrossRef ADS Google scholar
[39]
M. Tavis and F. W. Cummings, Exact solution for an n-molecule — radiation-field hamiltonian, Phys. Rev. 170(2), 379 (1968)
CrossRef ADS Google scholar
[40]
I. D. Leroux, M. H. Schleier-Smith, and V. Vuletic, Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett. 104(7), 073602 (2010)
CrossRef ADS Google scholar
[41]
N. Yu, Separability of a mixture of Dicke states, Phys. Rev. A 94(6), 060101 (2016)
CrossRef ADS Google scholar
[42]
V. Bužek, M. Orszag, and M. Roško, Instability and entanglement of the ground state of the Dicke model, Phys. Rev. Lett. 94(16), 163601 (2005)
CrossRef ADS Google scholar
[43]
V. Coffman, J. Kundu, and W. K. Wootters, Distributed entanglement, Phys. Rev. A 61(5), 052306 (2000)
CrossRef ADS Google scholar
[44]
M. Koashi, V. Bužek, and N. Imoto, Entangled webs: Tight bound for symmetric sharing of entanglement, Phys. Rev. A 62(5), 050302 (2000)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

We acknowledge the support from the RESEARCH SUPPORT PLAN 2022 − Call for applications for funding allocation to research projects curiosity driven (F CUR) − Project “Entanglement Protection of Qubits’ Dynamics in a Cavity”– EPQDC and the support by the Italian National Group of Mathematical Physics (GNFM-INdAM). R. F. and A. V. would like to acknowledge INFN Pisa for the financial support to this activity.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5863 KB)

Accesses

Citations

Detail

Sections
Recommended

/