Complete hyperentangled state analysis using high-dimensional entanglement
Zhi Zeng
Complete hyperentangled state analysis using high-dimensional entanglement
In this paper, we present a novel method for the complete analysis of maximally hyperentangled state of photon system in two degrees of freedom (DOFs), resorting to the auxiliary high-dimensional entanglement in the third DOF. This method not only can be used for complete hyperentangled Bell state analysis of two-photon system, but also can be suitable for complete hyperentangled Greenberger−Horne−Zeilinger (GHZ) state analysis of three-photon system, and can be extended to the complete N-photon hyperentangled GHZ state analysis. In our approach, the parity information of hyperentanglement is determined via the measurement on evolved auxiliary high-dimensional entanglement, and the relative phase information of hyperentanglement is determined via the projective measurement. Moreover, this approach can be accomplished by just using linear optics, and is significant for the investigation of photonic hyperentangled state analysis.
hyperentangled state analysis / high-dimensional entanglement / GHZ state
[1] |
Z. Zhang, C. You, O. S. Magana-Loaiza, R. Fickler, R. J. León-Montiel, J. P. Torres, T. S. Humble, S. Liu, Y. Xia, and Q. Zhuang, Entanglement-based quantum information technology: A tutorial, Adv. Opt. Photonics 16(1), 60 (2024)
CrossRef
ADS
Google scholar
|
[2] |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef
ADS
Google scholar
|
[3] |
C. H. Bennett and S. J. Wiesner, Communication via one- and two particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
CrossRef
ADS
Google scholar
|
[4] |
C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[5] |
M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Event-ready-detectors Bell experiment via entanglement swapping, Phys. Rev. Lett. 71(26), 4287 (1993)
CrossRef
ADS
Google scholar
|
[6] |
T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Optical imaging by means of two-photon quantum entanglement, Phys. Rev. A 52(5), R3429 (1995)
CrossRef
ADS
Google scholar
|
[7] |
H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932 (1998)
CrossRef
ADS
Google scholar
|
[8] |
P. G. Kwiat, Hyper-entangled states, J. Mod. Opt. 44(11−12), 2173 (1997)
CrossRef
ADS
Google scholar
|
[9] |
F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. (Beijing) 62(1), 46 (2017)
CrossRef
ADS
Google scholar
|
[10] |
P. Wang, C. Q. Yu, Z. X. Wang, R. Y. Yuan, F. F. Du, and B. C. Ren, Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system, Front. Phys. 17(3), 31501 (2022)
CrossRef
ADS
Google scholar
|
[11] |
Y. M. Wu, G. Fan, and F. F. Du, Error-detected three photon hyperparallel Toffoli gate with state-selective reflection, Front. Phys. 17(5), 51502 (2022)
CrossRef
ADS
Google scholar
|
[12] |
M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-dimensional quantum entanglement, Nat. Rev. Phys. 2(7), 365 (2020)
CrossRef
ADS
Google scholar
|
[13] |
H. Defienne, B. Ndagano, A. Lyons, and D. Faccio, Polarization entanglement-enabled quantum holography, Nat. Phys. 17(5), 591 (2021)
CrossRef
ADS
Google scholar
|
[14] |
R.CamphausenA.CuevasL.DuempelmannR.A. TerborgE.WajsS.Tisa A.RuggeriI. CusiniF.SteinlechnerV.Pruneri, A quantum-enhanced wide-field phase imager, Sci. Adv. 7(47), eabj2155 (2021)
|
[15] |
W. Zhang, X. Qiu, D. Zhang, and L. Chen, Visualizing the Hardy’s paradox using hyper-entanglement-assisted ghost imaging, Laser Photonics Rev. 17(11), 2200865 (2023)
CrossRef
ADS
Google scholar
|
[16] |
Y. Zhang, Z. He, X. Tong, D. C. Garrett, R. Cao, and L. V. Wang, Quantum imaging of biological organisms through spatial and polarization entanglement, Sci. Adv. 10(10), eadk1495 (2024)
CrossRef
ADS
Google scholar
|
[17] |
L. J. Kong, Y. Sun, F. Zhang, J. Zhang, and X. Zhang, High-dimensional entanglement-enabled holography, Phys. Rev. Lett. 130(5), 053602 (2023)
CrossRef
ADS
Google scholar
|
[18] |
D. Zia, N. Dehghan, A. D’Errico, F. Sciarrino, and E. Karimi, Interferometric imaging of amplitude and phase of spatial biphoton states, Nat. Photonics 17(11), 1009 (2023)
CrossRef
ADS
Google scholar
|
[19] |
N. Bornman, M. Agnew, F. Zhu, A. Vall´es, A. Forbes, and J. Leach, Ghost imaging using entanglement swapped photons, npj Quantum Inf. 5, 63 (2019)
CrossRef
ADS
Google scholar
|
[20] |
X. Qiu, H. Guo, and L. Chen, Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion, Nat. Commun. 14(1), 8244 (2023)
CrossRef
ADS
Google scholar
|
[21] |
N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, Bell measurements for teleportation, Phys. Rev. A 59(5), 3295 (1999)
CrossRef
ADS
Google scholar
|
[22] |
J. W. Pan and A. Zeilinger, Greenberger–Horne–Zeilinger-state analyzer, Phys. Rev. A 57(3), 2208 (1998)
CrossRef
ADS
Google scholar
|
[23] |
P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)
CrossRef
ADS
Google scholar
|
[24] |
S. P. Walborn, S. Padua, and C. H. Monken, Hyperentanglement-assisted Bell-state analysis, Phys. Rev. A 68(4), 042313 (2003)
CrossRef
ADS
Google scholar
|
[25] |
S. Song, Y. Cao, Y. B. Sheng, and G. L. Long, Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement, Quantum Inform. Process. 12(1), 381 (2013)
CrossRef
ADS
Google scholar
|
[26] |
Z. Zeng, C. Wang, and X. H. Li, Complete N-qubit Greenberger–Horne–Zeilinger states analysis assisted by frequency degree of freedom, Commum. Theor. Phys. 62(5), 683 (2014)
CrossRef
ADS
Google scholar
|
[27] |
T.C. WeiJ. T. BarreiroP.G. Kwiat, Hyper entangled Bell-state analysis, Phys. Rev. A 75, 060305(R) (2007)
|
[28] |
N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement, Phys. Rev. A 84(2), 022340 (2011)
CrossRef
ADS
Google scholar
|
[29] |
Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)
CrossRef
ADS
Google scholar
|
[30] |
B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
CrossRef
ADS
Google scholar
|
[31] |
T. J. Wang, Y. Lu, and G. L. Long, Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities, Phys. Rev. A 86(4), 042337 (2012)
CrossRef
ADS
Google scholar
|
[32] |
Q. Liu and M. Zhang, Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators, Phys. Rev. A 91(6), 062321 (2015)
CrossRef
ADS
Google scholar
|
[33] |
X. H. Li and S. Ghose, Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity, Phys. Rev. A 93(2), 022302 (2016)
CrossRef
ADS
Google scholar
|
[34] |
X. H. Li and S. Ghose, Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement, Opt. Express 24(16), 18388 (2016)
CrossRef
ADS
Google scholar
|
[35] |
G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities, Opt. Express 24(25), 28444 (2016)
CrossRef
ADS
Google scholar
|
[36] |
Z. Zeng, Self-assisted complete hyperentangled Bell state analysis using quantum-dot spins in optical microcavities, Laser Phys. Lett. 15(5), 055204 (2018)
CrossRef
ADS
Google scholar
|
[37] |
C. Cao, L. Zhang, Y. H. Han, P. P. Yin, L. Fan, Y. W. Duan, and R. Zhang, Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate, Opt. Express 28(3), 2857 (2020)
CrossRef
ADS
Google scholar
|
[38] |
X.H. LiS. Ghose, Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement, Phys. Rev. A 96, 020303(R) (2017)
|
[39] |
G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement, Opt. Express 27(6), 8994 (2019)
CrossRef
ADS
Google scholar
|
[40] |
Z. Zeng and K. D. Zhu, Complete hyperentangled Bell state analysis assisted by hyperentanglement, Laser Phys. Lett. 17(7), 075203 (2020)
CrossRef
ADS
Google scholar
|
[41] |
Z. Zeng and K. D. Zhu, Complete hyperentangled state analysis using weak cross-Kerr nonlinearity and auxiliary entanglement, New J. Phys. 22(8), 083051 (2020)
CrossRef
ADS
Google scholar
|
[42] |
X. J. Zhou, W. Q. Liu, H. R. Wei, Y. B. Zheng, and F. F. Du, Deterministic and complete hyperentangled Bell states analysis assisted by frequency and time interval degrees of freedom, Front. Phys. 17(5), 41502 (2022)
CrossRef
ADS
Google scholar
|
[43] |
D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, High-dimensional quantum communication: Benefits, progress, and future challenges, Adv. Quantum Technol. 2(12), 1900038 (2019)
CrossRef
ADS
Google scholar
|
[44] |
F. Wang, M. Erhard, A. Babazadeh, M. Malik, M. Krenn, and A. Zeilinger, Generation of the complete four-dimensional Bell basis, Optica 4(12), 1462 (2017)
CrossRef
ADS
Google scholar
|
[45] |
X. M. Hu, W. B. Xing, B. H. Liu, Y. F. Huang, C. F. Li, G. C. Guo, P. Erker, and M. Huber, Efficient generation of high-dimensional entanglement through multipath down-conversion, Phys. Rev. Lett. 125(9), 090503 (2020)
CrossRef
ADS
Google scholar
|
[46] |
Y. Chen, W. Zhang, D. Zhang, X. Qiu, and L. Chen, Coherent generation of the complete high-dimensional Bell basis by adaptive pump modulation, Phys. Rev. Appl. 14(5), 054069 (2020)
CrossRef
ADS
Google scholar
|
[47] |
M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits, Nat. Photonics 12(12), 759 (2018)
CrossRef
ADS
Google scholar
|
[48] |
A. Cervera-Lierta, M. Krenn, A. Aspuru-Guzik, and A. Galda, Experimental high-dimensional Greenberger–Horne–Zeilinger entanglement with superconducting transmon qutrits, Phys. Rev. Appl. 17(2), 024062 (2022)
CrossRef
ADS
Google scholar
|
[49] |
X. F. Shi, Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields, Front. Phys. 19(2), 22203 (2024)
CrossRef
ADS
Google scholar
|
[50] |
J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
CrossRef
ADS
Google scholar
|
[51] |
G.ValloneR. CeccarelliF.De MartiniP.Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79, 030301(R) (2009)
|
[52] |
X.L. WangY. H. LuoH.L. HuangM.C. ChenZ.E. Su C.LiuC. ChenW.LiY.Q. FangX.Jiang J.ZhangL. LiN.L. LiuC.Y. LuJ.W. Pan, 18-qubit entanglement with six photons’ three degrees of freedom, Phys. Rev. Lett. 120(26), 260502 (2018)
|
[53] |
X. Wang, S. Yu, S. Liu, K. Zhang, Y. Lou, W. Wang, and J. Jing, Deterministic generation of large-scale hyperentanglement in three degrees of freedom, Adv. Photonics Nexus 1(1), 016002 (2022)
CrossRef
ADS
Google scholar
|
[54] |
H. Guo, N. Liu, Z. Li, R. Yang, H. Sun, K. Liu, and J. Gao, Generation of continuous variable high-dimensional entanglement with three degrees of freedom and multiplexing quantum dense coding, Photon. Res. 10(12), 2828 (2022)
CrossRef
ADS
Google scholar
|
[55] |
L. Achatz, L. Bulla, S. Ecker, E. A. Ortega, M. Bartokos, J. C. Alvarado-Zacarias, R. Amezcua-Correa, M. Bohmann, R. Ursin, and M. Huber, Simultaneous transmission of hyper-entanglement in three degrees of freedom through a multicore fiber, npj Quantum Inf. 9, 45 (2023)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |