Complete hyperentangled state analysis using high-dimensional entanglement

Zhi Zeng

PDF(3032 KB)
PDF(3032 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 023302. DOI: 10.15302/frontphys.2025.023302
RESEARCH ARTICLE

Complete hyperentangled state analysis using high-dimensional entanglement

Author information +
History +

Abstract

In this paper, we present a novel method for the complete analysis of maximally hyperentangled state of photon system in two degrees of freedom (DOFs), resorting to the auxiliary high-dimensional entanglement in the third DOF. This method not only can be used for complete hyperentangled Bell state analysis of two-photon system, but also can be suitable for complete hyperentangled Greenberger−Horne−Zeilinger (GHZ) state analysis of three-photon system, and can be extended to the complete N-photon hyperentangled GHZ state analysis. In our approach, the parity information of hyperentanglement is determined via the measurement on evolved auxiliary high-dimensional entanglement, and the relative phase information of hyperentanglement is determined via the projective measurement. Moreover, this approach can be accomplished by just using linear optics, and is significant for the investigation of photonic hyperentangled state analysis.

Graphical abstract

Keywords

hyperentangled state analysis / high-dimensional entanglement / GHZ state

Cite this article

Download citation ▾
Zhi Zeng. Complete hyperentangled state analysis using high-dimensional entanglement. Front. Phys., 2025, 20(2): 023302 https://doi.org/10.15302/frontphys.2025.023302

References

[1]
Z. Zhang, C. You, O. S. Magana-Loaiza, R. Fickler, R. J. León-Montiel, J. P. Torres, T. S. Humble, S. Liu, Y. Xia, and Q. Zhuang, Entanglement-based quantum information technology: A tutorial, Adv. Opt. Photonics 16(1), 60 (2024)
CrossRef ADS Google scholar
[2]
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef ADS Google scholar
[3]
C. H. Bennett and S. J. Wiesner, Communication via one- and two particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
CrossRef ADS Google scholar
[4]
C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[5]
M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Event-ready-detectors Bell experiment via entanglement swapping, Phys. Rev. Lett. 71(26), 4287 (1993)
CrossRef ADS Google scholar
[6]
T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Optical imaging by means of two-photon quantum entanglement, Phys. Rev. A 52(5), R3429 (1995)
CrossRef ADS Google scholar
[7]
H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Quantum repeaters: The role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81(26), 5932 (1998)
CrossRef ADS Google scholar
[8]
P. G. Kwiat, Hyper-entangled states, J. Mod. Opt. 44(11−12), 2173 (1997)
CrossRef ADS Google scholar
[9]
F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. (Beijing) 62(1), 46 (2017)
CrossRef ADS Google scholar
[10]
P. Wang, C. Q. Yu, Z. X. Wang, R. Y. Yuan, F. F. Du, and B. C. Ren, Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system, Front. Phys. 17(3), 31501 (2022)
CrossRef ADS Google scholar
[11]
Y. M. Wu, G. Fan, and F. F. Du, Error-detected three photon hyperparallel Toffoli gate with state-selective reflection, Front. Phys. 17(5), 51502 (2022)
CrossRef ADS Google scholar
[12]
M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-dimensional quantum entanglement, Nat. Rev. Phys. 2(7), 365 (2020)
CrossRef ADS Google scholar
[13]
H. Defienne, B. Ndagano, A. Lyons, and D. Faccio, Polarization entanglement-enabled quantum holography, Nat. Phys. 17(5), 591 (2021)
CrossRef ADS Google scholar
[14]
R.CamphausenA.CuevasL.DuempelmannR.A. TerborgE.WajsS.Tisa A.RuggeriI. CusiniF.SteinlechnerV.Pruneri, A quantum-enhanced wide-field phase imager, Sci. Adv. 7(47), eabj2155 (2021)
[15]
W. Zhang, X. Qiu, D. Zhang, and L. Chen, Visualizing the Hardy’s paradox using hyper-entanglement-assisted ghost imaging, Laser Photonics Rev. 17(11), 2200865 (2023)
CrossRef ADS Google scholar
[16]
Y. Zhang, Z. He, X. Tong, D. C. Garrett, R. Cao, and L. V. Wang, Quantum imaging of biological organisms through spatial and polarization entanglement, Sci. Adv. 10(10), eadk1495 (2024)
CrossRef ADS Google scholar
[17]
L. J. Kong, Y. Sun, F. Zhang, J. Zhang, and X. Zhang, High-dimensional entanglement-enabled holography, Phys. Rev. Lett. 130(5), 053602 (2023)
CrossRef ADS Google scholar
[18]
D. Zia, N. Dehghan, A. D’Errico, F. Sciarrino, and E. Karimi, Interferometric imaging of amplitude and phase of spatial biphoton states, Nat. Photonics 17(11), 1009 (2023)
CrossRef ADS Google scholar
[19]
N. Bornman, M. Agnew, F. Zhu, A. Vall´es, A. Forbes, and J. Leach, Ghost imaging using entanglement swapped photons, npj Quantum Inf. 5, 63 (2019)
CrossRef ADS Google scholar
[20]
X. Qiu, H. Guo, and L. Chen, Remote transport of high-dimensional orbital angular momentum states and ghost images via spatial-mode-engineered frequency conversion, Nat. Commun. 14(1), 8244 (2023)
CrossRef ADS Google scholar
[21]
N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, Bell measurements for teleportation, Phys. Rev. A 59(5), 3295 (1999)
CrossRef ADS Google scholar
[22]
J. W. Pan and A. Zeilinger, Greenberger–Horne–Zeilinger-state analyzer, Phys. Rev. A 57(3), 2208 (1998)
CrossRef ADS Google scholar
[23]
P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)
CrossRef ADS Google scholar
[24]
S. P. Walborn, S. Padua, and C. H. Monken, Hyperentanglement-assisted Bell-state analysis, Phys. Rev. A 68(4), 042313 (2003)
CrossRef ADS Google scholar
[25]
S. Song, Y. Cao, Y. B. Sheng, and G. L. Long, Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement, Quantum Inform. Process. 12(1), 381 (2013)
CrossRef ADS Google scholar
[26]
Z. Zeng, C. Wang, and X. H. Li, Complete N-qubit Greenberger–Horne–Zeilinger states analysis assisted by frequency degree of freedom, Commum. Theor. Phys. 62(5), 683 (2014)
CrossRef ADS Google scholar
[27]
T.C. WeiJ. T. BarreiroP.G. Kwiat, Hyper entangled Bell-state analysis, Phys. Rev. A 75, 060305(R) (2007)
[28]
N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement, Phys. Rev. A 84(2), 022340 (2011)
CrossRef ADS Google scholar
[29]
Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)
CrossRef ADS Google scholar
[30]
B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
CrossRef ADS Google scholar
[31]
T. J. Wang, Y. Lu, and G. L. Long, Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities, Phys. Rev. A 86(4), 042337 (2012)
CrossRef ADS Google scholar
[32]
Q. Liu and M. Zhang, Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators, Phys. Rev. A 91(6), 062321 (2015)
CrossRef ADS Google scholar
[33]
X. H. Li and S. Ghose, Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity, Phys. Rev. A 93(2), 022302 (2016)
CrossRef ADS Google scholar
[34]
X. H. Li and S. Ghose, Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement, Opt. Express 24(16), 18388 (2016)
CrossRef ADS Google scholar
[35]
G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities, Opt. Express 24(25), 28444 (2016)
CrossRef ADS Google scholar
[36]
Z. Zeng, Self-assisted complete hyperentangled Bell state analysis using quantum-dot spins in optical microcavities, Laser Phys. Lett. 15(5), 055204 (2018)
CrossRef ADS Google scholar
[37]
C. Cao, L. Zhang, Y. H. Han, P. P. Yin, L. Fan, Y. W. Duan, and R. Zhang, Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate, Opt. Express 28(3), 2857 (2020)
CrossRef ADS Google scholar
[38]
X.H. LiS. Ghose, Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement, Phys. Rev. A 96, 020303(R) (2017)
[39]
G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement, Opt. Express 27(6), 8994 (2019)
CrossRef ADS Google scholar
[40]
Z. Zeng and K. D. Zhu, Complete hyperentangled Bell state analysis assisted by hyperentanglement, Laser Phys. Lett. 17(7), 075203 (2020)
CrossRef ADS Google scholar
[41]
Z. Zeng and K. D. Zhu, Complete hyperentangled state analysis using weak cross-Kerr nonlinearity and auxiliary entanglement, New J. Phys. 22(8), 083051 (2020)
CrossRef ADS Google scholar
[42]
X. J. Zhou, W. Q. Liu, H. R. Wei, Y. B. Zheng, and F. F. Du, Deterministic and complete hyperentangled Bell states analysis assisted by frequency and time interval degrees of freedom, Front. Phys. 17(5), 41502 (2022)
CrossRef ADS Google scholar
[43]
D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, High-dimensional quantum communication: Benefits, progress, and future challenges, Adv. Quantum Technol. 2(12), 1900038 (2019)
CrossRef ADS Google scholar
[44]
F. Wang, M. Erhard, A. Babazadeh, M. Malik, M. Krenn, and A. Zeilinger, Generation of the complete four-dimensional Bell basis, Optica 4(12), 1462 (2017)
CrossRef ADS Google scholar
[45]
X. M. Hu, W. B. Xing, B. H. Liu, Y. F. Huang, C. F. Li, G. C. Guo, P. Erker, and M. Huber, Efficient generation of high-dimensional entanglement through multipath down-conversion, Phys. Rev. Lett. 125(9), 090503 (2020)
CrossRef ADS Google scholar
[46]
Y. Chen, W. Zhang, D. Zhang, X. Qiu, and L. Chen, Coherent generation of the complete high-dimensional Bell basis by adaptive pump modulation, Phys. Rev. Appl. 14(5), 054069 (2020)
CrossRef ADS Google scholar
[47]
M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits, Nat. Photonics 12(12), 759 (2018)
CrossRef ADS Google scholar
[48]
A. Cervera-Lierta, M. Krenn, A. Aspuru-Guzik, and A. Galda, Experimental high-dimensional Greenberger–Horne–Zeilinger entanglement with superconducting transmon qutrits, Phys. Rev. Appl. 17(2), 024062 (2022)
CrossRef ADS Google scholar
[49]
X. F. Shi, Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields, Front. Phys. 19(2), 22203 (2024)
CrossRef ADS Google scholar
[50]
J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
CrossRef ADS Google scholar
[51]
G.ValloneR. CeccarelliF.De MartiniP.Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79, 030301(R) (2009)
[52]
X.L. WangY. H. LuoH.L. HuangM.C. ChenZ.E. Su C.LiuC. ChenW.LiY.Q. FangX.Jiang J.ZhangL. LiN.L. LiuC.Y. LuJ.W. Pan, 18-qubit entanglement with six photons’ three degrees of freedom, Phys. Rev. Lett. 120(26), 260502 (2018)
[53]
X. Wang, S. Yu, S. Liu, K. Zhang, Y. Lou, W. Wang, and J. Jing, Deterministic generation of large-scale hyperentanglement in three degrees of freedom, Adv. Photonics Nexus 1(1), 016002 (2022)
CrossRef ADS Google scholar
[54]
H. Guo, N. Liu, Z. Li, R. Yang, H. Sun, K. Liu, and J. Gao, Generation of continuous variable high-dimensional entanglement with three degrees of freedom and multiplexing quantum dense coding, Photon. Res. 10(12), 2828 (2022)
CrossRef ADS Google scholar
[55]
L. Achatz, L. Bulla, S. Ecker, E. A. Ortega, M. Bartokos, J. C. Alvarado-Zacarias, R. Amezcua-Correa, M. Bohmann, R. Ursin, and M. Huber, Simultaneous transmission of hyper-entanglement in three degrees of freedom through a multicore fiber, npj Quantum Inf. 9, 45 (2023)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3032 KB)

Accesses

Citations

Detail

Sections
Recommended

/